基于130 nm双极型晶体管与互补金属氧化物半导体(Bipolar and Complementary Metal Oxide Semiconductor,BiCMOS)工艺,采用矢量合成架构的高精度移相器架构,提出了一款满足5G与民用卫星通信应用需求的K频段4通道高精度有源移相器。在移...基于130 nm双极型晶体管与互补金属氧化物半导体(Bipolar and Complementary Metal Oxide Semiconductor,BiCMOS)工艺,采用矢量合成架构的高精度移相器架构,提出了一款满足5G与民用卫星通信应用需求的K频段4通道高精度有源移相器。在移相器输入端和输出端,为了实现单端信号与差分信号的互相转换,同时为信号链路提供一定的增益,采用了有源巴伦结构。为了以更小的芯片面积实现差分信号到4路I/Q正交信号的转换,采用了折叠朗格耦合器;为了实现高精度的相位调节控制,采用了有源矢量合成器。芯片实测结果表明,在18~22 GHz的带宽内,各通道小信号增益在-3~-2 dB之间,增益平坦度小于1 dB,在-45℃~85℃之间增益波动小于3.5 dB,6位移相器移相误差均方根(Root Mean Square,RMS)小于2.5°。芯片尺寸为2.68 mm×2.5 mm。展开更多
文摘基于130 nm双极型晶体管与互补金属氧化物半导体(Bipolar and Complementary Metal Oxide Semiconductor,BiCMOS)工艺,采用矢量合成架构的高精度移相器架构,提出了一款满足5G与民用卫星通信应用需求的K频段4通道高精度有源移相器。在移相器输入端和输出端,为了实现单端信号与差分信号的互相转换,同时为信号链路提供一定的增益,采用了有源巴伦结构。为了以更小的芯片面积实现差分信号到4路I/Q正交信号的转换,采用了折叠朗格耦合器;为了实现高精度的相位调节控制,采用了有源矢量合成器。芯片实测结果表明,在18~22 GHz的带宽内,各通道小信号增益在-3~-2 dB之间,增益平坦度小于1 dB,在-45℃~85℃之间增益波动小于3.5 dB,6位移相器移相误差均方根(Root Mean Square,RMS)小于2.5°。芯片尺寸为2.68 mm×2.5 mm。