We give the brief review on the related definition of the geometric phase independent of specific physical system based on the displacement opreator and the sqeezed operator, then show how the displacement operator an...We give the brief review on the related definition of the geometric phase independent of specific physical system based on the displacement opreator and the sqeezed operator, then show how the displacement operator and the squeezed operator can induce the general geometric phase. By means of the displacement operator and the squeezed operator concerning the circuit cavity mode state along a closed path in the phase space, we discuss specifically how to implement a two-qubit geometric phase gate in circuit quantum electrodynamics with both single photon interaction and two-photon interaction between the superconducting qubits and the circuit cavity modes. The experimental feasibility is discussed in detail.展开更多
We propose a theoretical scheme for realizing the general conditional phase shift gate of charge qubits situated in a high-Q superconducting transmission line resonator. The phase shifting angle can be tuned from 0 to...We propose a theoretical scheme for realizing the general conditional phase shift gate of charge qubits situated in a high-Q superconducting transmission line resonator. The phase shifting angle can be tuned from 0 to 27r by simply adjusting the qubit-resonator detuning and the interaction time. Based on this gate proposal, we give a detailed procedure to implement the three-qubit quantum Fourier transform with circuit quantum eleetrodynamics (QED). A careful analysis of the decoherence sources shows that the algorithm can be achieved with a high fidelity using current circuit QED techniques.展开更多
The application of the 3dB directional coupler is very extensive,such as the phase shifter,the attenuator and the RF pulse compressor etc.The performance of the 3dB directional coupler is very important for these comp...The application of the 3dB directional coupler is very extensive,such as the phase shifter,the attenuator and the RF pulse compressor etc.The performance of the 3dB directional coupler is very important for these components. Optimization design has been done using the HFSS code.The new phase shifter prototype using the new optimization results has been tested.The tested results are in agreement with the measured ones.展开更多
We propose a scheme for implementation of a universal set of quantum logic gates in decoherence-free subspace with atoms trapped in distant cavities connected by optical fibers.The selective dispersive couplings betwe...We propose a scheme for implementation of a universal set of quantum logic gates in decoherence-free subspace with atoms trapped in distant cavities connected by optical fibers.The selective dispersive couplings between the ground states and the first-excited states of the atom-cavity-fiber system produce a state-dependent Stark shift,which can be used to implement nonlocal phase gates between two logic qubits.The single-logic-qubit quantum gates are achieved by the local two-atom collision and the Stark shift of a single atom.During all the logic operations,the logic qubits remain in decoherence-free subspace and thus the operation is immune to collective dephasing.展开更多
In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio(SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary l...In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio(SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check(NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing(PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying(QPSK) and 16 quadrature amplitude modulation(16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate(BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.展开更多
基金Supported by the National Science Foundation of China under Grant Nos. 11074070, 10774042, and 10774163the Nature Science Foundation of Hunan Province under Grant No. 09JJ3121+1 种基金the Key Project of Science and Technology of Hunan Province under Grant Nos. 2010FJ2005 and 2008FJ4217the NKBRSFC under Grant No. 2010CB922904
文摘We give the brief review on the related definition of the geometric phase independent of specific physical system based on the displacement opreator and the sqeezed operator, then show how the displacement operator and the squeezed operator can induce the general geometric phase. By means of the displacement operator and the squeezed operator concerning the circuit cavity mode state along a closed path in the phase space, we discuss specifically how to implement a two-qubit geometric phase gate in circuit quantum electrodynamics with both single photon interaction and two-photon interaction between the superconducting qubits and the circuit cavity modes. The experimental feasibility is discussed in detail.
基金Supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China under Grant No. 200524the Program for New Century Excellent Talents of China under Grant No. 06-0920
文摘We propose a theoretical scheme for realizing the general conditional phase shift gate of charge qubits situated in a high-Q superconducting transmission line resonator. The phase shifting angle can be tuned from 0 to 27r by simply adjusting the qubit-resonator detuning and the interaction time. Based on this gate proposal, we give a detailed procedure to implement the three-qubit quantum Fourier transform with circuit quantum eleetrodynamics (QED). A careful analysis of the decoherence sources shows that the algorithm can be achieved with a high fidelity using current circuit QED techniques.
文摘The application of the 3dB directional coupler is very extensive,such as the phase shifter,the attenuator and the RF pulse compressor etc.The performance of the 3dB directional coupler is very important for these components. Optimization design has been done using the HFSS code.The new phase shifter prototype using the new optimization results has been tested.The tested results are in agreement with the measured ones.
基金supported by the Major State Basic Research Development Program of China (Grant No. 2012CB921601)the National Natural Science Foundation of China (Grant No. 10974028)+1 种基金the Doctoral Foundation of the Ministry of Education of China (Grant No. 20093514110009)the Natural Science Foundation of Fujian Province (Grant No. 2009J06002)
文摘We propose a scheme for implementation of a universal set of quantum logic gates in decoherence-free subspace with atoms trapped in distant cavities connected by optical fibers.The selective dispersive couplings between the ground states and the first-excited states of the atom-cavity-fiber system produce a state-dependent Stark shift,which can be used to implement nonlocal phase gates between two logic qubits.The single-logic-qubit quantum gates are achieved by the local two-atom collision and the Stark shift of a single atom.During all the logic operations,the logic qubits remain in decoherence-free subspace and thus the operation is immune to collective dephasing.
基金supported by the State Key Program of National Natural Science Foundation of China(No.61431009)the Natural Science Foundation of Shandong Province in China(No.ZR2014AM018)the Shandong Tai-shan Scholar Research Fund
文摘In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio(SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check(NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing(PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying(QPSK) and 16 quadrature amplitude modulation(16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate(BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.