由于零序滤波器自身的结构特点,无法滤除电网中除3的倍数次以外的谐波。根据变压器移相滤波原理,对变压器二次侧两个绕组采用星型和角型连接方式,使绕组之间的相电压产生30°的移相,经过绕组之间的谐波叠加消除5、7次等谐波。利用...由于零序滤波器自身的结构特点,无法滤除电网中除3的倍数次以外的谐波。根据变压器移相滤波原理,对变压器二次侧两个绕组采用星型和角型连接方式,使绕组之间的相电压产生30°的移相,经过绕组之间的谐波叠加消除5、7次等谐波。利用电磁暂态仿真软件(Power Systems Computer Aided Design,PSCAD)仿真,建立由移相变压器和零序滤波器组成的系统模型,对比分析仿真结果表明,移相变压器能够有效滤除网侧的5、7次等谐波,同时不影响零序滤波器的正常运行,移相变压器与零序滤波器的相互配合提高了滤波效果,为谐波治理的工程应用提供了一种新思路。展开更多
文摘由于零序滤波器自身的结构特点,无法滤除电网中除3的倍数次以外的谐波。根据变压器移相滤波原理,对变压器二次侧两个绕组采用星型和角型连接方式,使绕组之间的相电压产生30°的移相,经过绕组之间的谐波叠加消除5、7次等谐波。利用电磁暂态仿真软件(Power Systems Computer Aided Design,PSCAD)仿真,建立由移相变压器和零序滤波器组成的系统模型,对比分析仿真结果表明,移相变压器能够有效滤除网侧的5、7次等谐波,同时不影响零序滤波器的正常运行,移相变压器与零序滤波器的相互配合提高了滤波效果,为谐波治理的工程应用提供了一种新思路。