In order to obtain stable interval Q factor, by analyzing the spectrum of monitoring wavelet and down-going wavelet of zero-offset VSP data and referring the spectrum expression of Ricker wavelet, we propose a new exp...In order to obtain stable interval Q factor, by analyzing the spectrum of monitoring wavelet and down-going wavelet of zero-offset VSP data and referring the spectrum expression of Ricker wavelet, we propose a new expression of source wavelet spectrum. Basing on the new expression, we present improved amplitude spectral fitting and spectral ratio methods for interval Q inversion based on zero-offset VSP data, and the sequence for processing the zero-offset VSP data. Subsequently, we apply the proposed methods to real zero-offset VSP data, and carry out prestack inverse Q filtering to zero-offset VSP data and surface seismic data for amplitude compensation with the estimated Q value.展开更多
Highly precise acoustic impedance inversion is a key technology for pre-drilling prediction by VSP data. In this paper, based on the facts that VSP data has high resolution, high signal to noise ratio, and the downgoi...Highly precise acoustic impedance inversion is a key technology for pre-drilling prediction by VSP data. In this paper, based on the facts that VSP data has high resolution, high signal to noise ratio, and the downgoing and upgoing waves can be accurately separated, we propose a method of predicting the impedance below the borehole in front of the bit using VSP data. First, the method of nonlinear iterative inversion is adopted to invert for impedance using the VSP corridor stack. Then, by modifying the damping factor in the iteration and using the preconditioned conjugate gradient method to solve the equations, the stability and convergence of the inversion results can be enhanced. The results of theoretical models and actual data demonstrate that the method is effective for pre-drilling prediction using VSP data.展开更多
We modified the common-offset-common-reflection-surface (COCRS) method to attenuate ground roll, the coherent noise typically generated by a low-velocity, low-frequency, and high-amplitude Rayleigh wave. The COCRS o...We modified the common-offset-common-reflection-surface (COCRS) method to attenuate ground roll, the coherent noise typically generated by a low-velocity, low-frequency, and high-amplitude Rayleigh wave. The COCRS operator is based on hyperbolas, thus it fits events with hyperbolic traveltimes such as reflection events in prestack data. Conversely, ground roll is linear in the common-midpoint (CMP) and common-shot gathers and can be distinguished and attenuated by the COCRS operator. Thus, we search for the dip and curvature of the reflections in the common-shot gathers prior to the common-offset section. Because it is desirable to minimize the damage to the reflection amplitudes, we only stack the multicoverage data in the ground-roll areas. Searching the CS gathers before the CO section is another modification of the conventional COCRS stacking. We tested the proposed method using synthetic and real data sets from western Iran. The results of the ground-roll attenuation with the proposed method were compared with results of the f-k filtering and conventional COCRS stacking after f-k filtering. The results show that the proposed method attenuates the aliased and nonaliased ground roll better than the f-k filtering and conventional CRS stacking. However, the computation time was higher than other common methods such as f-k filtering.展开更多
In order to obtain a compact and exact representation of 2D range scans,UKF(unscented Kalman filter) and CDKF(central difference Kalman filter) were proposed for extracting the breakpoint of the laser data. Line extra...In order to obtain a compact and exact representation of 2D range scans,UKF(unscented Kalman filter) and CDKF(central difference Kalman filter) were proposed for extracting the breakpoint of the laser data. Line extraction was performed in every continuous breakpoint region by detecting the optimal angle and the optimal distance in polar coordinates,and every breakpoint area was constructed with two points. As a proof to the method,an experiment was performed by a mobile robot equipped with one SICK laser rangefinder,and the results of UKF/CDKF in breakpoint detection and line extraction were compared with those of the EKF(extended Kalman filter) . The results show that the exact geometry of the raw laser data of the environments can be obtained by segmented raw measurements(combining the proposed breakpoint detection approach with the line extraction method) ,and method UKF is the best one compared with CDKF and EKF.展开更多
基金sponsored by the National Nature Science Foundation of China(Nos.41174114 and 41274128)
文摘In order to obtain stable interval Q factor, by analyzing the spectrum of monitoring wavelet and down-going wavelet of zero-offset VSP data and referring the spectrum expression of Ricker wavelet, we propose a new expression of source wavelet spectrum. Basing on the new expression, we present improved amplitude spectral fitting and spectral ratio methods for interval Q inversion based on zero-offset VSP data, and the sequence for processing the zero-offset VSP data. Subsequently, we apply the proposed methods to real zero-offset VSP data, and carry out prestack inverse Q filtering to zero-offset VSP data and surface seismic data for amplitude compensation with the estimated Q value.
文摘Highly precise acoustic impedance inversion is a key technology for pre-drilling prediction by VSP data. In this paper, based on the facts that VSP data has high resolution, high signal to noise ratio, and the downgoing and upgoing waves can be accurately separated, we propose a method of predicting the impedance below the borehole in front of the bit using VSP data. First, the method of nonlinear iterative inversion is adopted to invert for impedance using the VSP corridor stack. Then, by modifying the damping factor in the iteration and using the preconditioned conjugate gradient method to solve the equations, the stability and convergence of the inversion results can be enhanced. The results of theoretical models and actual data demonstrate that the method is effective for pre-drilling prediction using VSP data.
基金the creators of the Seismic Lab, a MATLAB seismic data processing package, the NIOC Exploration Directorate, Iran for financial support and the data of the Project No. 89235
文摘We modified the common-offset-common-reflection-surface (COCRS) method to attenuate ground roll, the coherent noise typically generated by a low-velocity, low-frequency, and high-amplitude Rayleigh wave. The COCRS operator is based on hyperbolas, thus it fits events with hyperbolic traveltimes such as reflection events in prestack data. Conversely, ground roll is linear in the common-midpoint (CMP) and common-shot gathers and can be distinguished and attenuated by the COCRS operator. Thus, we search for the dip and curvature of the reflections in the common-shot gathers prior to the common-offset section. Because it is desirable to minimize the damage to the reflection amplitudes, we only stack the multicoverage data in the ground-roll areas. Searching the CS gathers before the CO section is another modification of the conventional COCRS stacking. We tested the proposed method using synthetic and real data sets from western Iran. The results of the ground-roll attenuation with the proposed method were compared with results of the f-k filtering and conventional COCRS stacking after f-k filtering. The results show that the proposed method attenuates the aliased and nonaliased ground roll better than the f-k filtering and conventional CRS stacking. However, the computation time was higher than other common methods such as f-k filtering.
基金Project(2003AA1Z2130)supported by the National High-Tech Research and Development Program of ChinaProject(2005C11001-02)supported by the Science and Technology Project of Zhejiang Province,China
文摘In order to obtain a compact and exact representation of 2D range scans,UKF(unscented Kalman filter) and CDKF(central difference Kalman filter) were proposed for extracting the breakpoint of the laser data. Line extraction was performed in every continuous breakpoint region by detecting the optimal angle and the optimal distance in polar coordinates,and every breakpoint area was constructed with two points. As a proof to the method,an experiment was performed by a mobile robot equipped with one SICK laser rangefinder,and the results of UKF/CDKF in breakpoint detection and line extraction were compared with those of the EKF(extended Kalman filter) . The results show that the exact geometry of the raw laser data of the environments can be obtained by segmented raw measurements(combining the proposed breakpoint detection approach with the line extraction method) ,and method UKF is the best one compared with CDKF and EKF.