To understand the dynamics of added nitrogen (N) in alpine meadow and the role of alpine plants and soil microorganisms in the retention of deposited N, the fate of 15 N labeled nitrate and ammonium salts was...To understand the dynamics of added nitrogen (N) in alpine meadow and the role of alpine plants and soil microorganisms in the retention of deposited N, the fate of 15 N labeled nitrate and ammonium salts was determined in an alpine meadow for two months. Two weeks after 15 N application, total recovery of 15 N from NO - 3_ 15 N was 73.5% while it was 78% from NH + 4_ 15 N. More 15 N was recovered in plants than in soil organic matter or in microbial biomass, irrespective of forms of N added. After one month, 70.6% of added NO - 3_ 15 N and 57.4% of NH + 4_ 15 N were recovered in soils and plants. 15 N recovered in soil organic matter decreased greatly while that recovered in plants varied little, irrespective of the form N. Compared with the results of two weeks after 15 N application, more NO - 3_ 15 N than NH + 4_ 15 N was recovered in microbial biomass. Total recovery was 58.4% (six weeks) and 67% (eight weeks) from NO - 3_ 15 N, and 43.1% and 49% from NH + 4_ 15 N, respectively. Both plants and soil microorganism recovered more NO - 3_ 15 N than NH + 4_ 15 N. But plants recovered more 15 N than soil microorganisms. During the whole experiment plants retained more NO - 3_N and 15 N than soil microorganisms while 15 N recovered in inorganic N pool did not exceed 1% due to lower amount of inorganic N. This indicates that plants play more important roles in the retention of deposited N although microbial biomass can be an important sink for deposited N in early days after N application.展开更多
A model for simulating cadmium transport in a soil-plant system was built using a commercial simulating program named Powersim on the basis of input-output processes happening in the soil-plant system. Convective and ...A model for simulating cadmium transport in a soil-plant system was built using a commercial simulating program named Powersim on the basis of input-output processes happening in the soil-plant system. Convective and dispersive transport processes of cadmium in soil profile are embedded. Simulations on a daily base have been done up to a total simulating time of 250 years. Results show that applications of sewage sludge and fertilizer at the simulated rates would only cause slight cadmium accumulations in each layer of the soil, and cadmium accumulation would be levelling off, reaching an equilibrium concentrations layer by layer downward after certain time. The time scale to reach an equilibrium concentration varies from 10 years for the top three layers to over 250 years for the bottom layers. Plant cadmium uptake would increase from 52μg m-2 under initial soil cadmium concentrations to 65μg m-2 under equilibrium soil cadmium concentrations, which would not exceed the maximum allowable cadmium concentration in wheat grains. Main parameters which influence cadmium accumulation and transport in soil are total cadmium input, rainfall, evaporation, plant uptake and soil properties.展开更多
A pot experiment was carried out to investigate effect of ectomycorrhizal fungi on eucalyptus growth and K bio-mobilization from soils and clay minerals. In the experiment, sands mixed with soil, KCI-saturated vermicu...A pot experiment was carried out to investigate effect of ectomycorrhizal fungi on eucalyptus growth and K bio-mobilization from soils and clay minerals. In the experiment, sands mixed with soil, KCI-saturated vermiculate and mica, respectively, were used to nurse eucalyptus seedlings which were nonectomycorrhized or ectomycorrhized by an ectomycorrhizal fungus Pisolithus tinctorius strain XCI (Pt XC1) isolated from a forest soil from Xichang, Sichuan Province, China, and a worldwide well-known ectomycorrhizal fungus Pisolithus tinctorius strain 2144 (Pt 2144) obtained in Australia. More depletion of HCl-soluble K by mycorrhizas from the soil and minerals than nonmycorrhizas suggested that mycorrhizas had a great ability to mobilize K present in the interlayer and feldspar. Mycorrhizal seedlings depressed greatly K digested with HF-HCIO4 from substrates after consecutive extractions of soils and minerals by water, ammonium cetate and boiling HCl, while nonmycorrhizal seedlings reduced it little if any, showing that the mycorrhizal seedlings could mobilize and then utilize the structural K in mineral lattice. Ectomycorrhizal fungi played a very important role not only in promoting the growth of eucalyptus seedlings but also in mobilizing K in soils and minerals. The infection of Pt XC1 led to a better growth of eucalyptus seedlings and more K accumulation in the seedlings than that of Pt 2144. The large differences in K accumulation by the seedlings might be due to different abilities of the two ectomycorrhizal fungi to mobilize K in interlayer and lattice pools in the clay minerals.展开更多
Ectomycorrhizal fungi, including Cenococcum geophilum SIV (Cg SIV), and Pisolithus tinctorius 2144 (Pt 2144), 441 (Pt 441) and XC1 (Pt XC1), were cultured in Pachlewski liquid medium with H2KPO4,KCl- saturated vermicu...Ectomycorrhizal fungi, including Cenococcum geophilum SIV (Cg SIV), and Pisolithus tinctorius 2144 (Pt 2144), 441 (Pt 441) and XC1 (Pt XC1), were cultured in Pachlewski liquid medium with H2KPO4,KCl- saturated vermiculite and mica as K sources, respectively, to investigate the mechanism of K absorption and mobilization by the fungi. Fungal growth rate, K absorption and mobilization varied significantly among the fungal species. Faster growth and greater K accumulation in Pt XC1 than Pt 2 144, Pt 441 and Cg siv were observed. Ectomycorrhizal fungi depressed HCl-soluble K in minerals after successive extractions by water and NH4OAc. Ratio of the total amount of K, including water-, NH4OAc- and HCI-soluble K, lost from substrates to the K accumulated in fungal colonies was less than 60%. These reveal that the ectomycorrhizal fungi could utilize K in interlayer and structural pools, which are usually unavailable for plants in short period. Large differences in the depletion of K in interlayer and structural pools by fungi were observed at fungal harvest. Taking into account the nutrient absorption by ectomycorrhizal fungi in symbionts and the direct contact between hyphae and soils, the fungi species colonized on the root surfaces seemed to be related to the effectiveness of mycorrhizas to utilize K in soils. Ectomycorrhizal fungi differed in the efflux of protons and oxalate. Pt XC1 was observed to have greatest ability to effuse protons and oxalate among the fungi adopted in the experiment. Furthermore, the higher the concentrations of protons and oxalate in the liquid culture solutions, the larger the depletion of K in interlayer and structural pools in minerals by fungi. Protons could replace interlayer K and chelation of oxalate with Fe and Al in crystal lattice could cause weathering of clay minerals. So, protons and oxalate produced by ectomycorrhizal fungi might play an important role in K mobilization in these two pools.展开更多
Effects of humus fractions (fulvic acid, brown humic acid and grey humic acid) on the leachability and transferring activity of five types of mineral-bound Hg were investigated. Under the acid leaching condition: fulv...Effects of humus fractions (fulvic acid, brown humic acid and grey humic acid) on the leachability and transferring activity of five types of mineral-bound Hg were investigated. Under the acid leaching condition: fulvic acid could promote leachability and vertical transference of all the mineral-bound Hg. Brown humic acid could retard the leaching and transferring processes of CaCO3-Hg, Fe2O3-Hg, MnO2-Hg and kaolinite Hg but not bentonite-Hg. Grey humic acid could greatly enhance residing ability of the mineral-bound Hg in the soil column and restrain them from vertical transferring. The effect of humus on leachability and transferring activity on the mineral-bound Hg was closely related to its ability to convert the mineral-bound Hg into organic-bound form and the transferability of the latter in the soil column. The characteristics of the mineral-bound Hg in speciation were the internal factors that determined the extent and rate of the influence of the humus.展开更多
Aiming at the issue that mass of gas emission from mining gob and the gas exceeded in working face, gob air leakage field and gas migration regularity in downlink ventilation was studied. In consideration of the influ...Aiming at the issue that mass of gas emission from mining gob and the gas exceeded in working face, gob air leakage field and gas migration regularity in downlink ventilation was studied. In consideration of the influence of natural wind pressure to analyze the stope face differential pressure, gob air leakage field distribution and gas migration regularity theoretically. Established a two-dimensional physical model with one source and one doab, and applied computational fluid dynamics analysis software Fluent to do numerical simulation, analyzed and contrasted to the areas of gob air leakage on size and gas emission from gob to working face on strength when using the downlink ventilation and uplink ventilation. When applied downward ventilation in stope face, the air leakage field of gob nearly working face, and the air leakage intensity were smaller than uplink, this can effectively reduce the gas emission from gob to working face; when used downlink ventilation, the air leakage airflow carry the lower amount of gas to doab than uplink ventilation, and more easily to mix the gas, reduced the possibility of gas accumulation in upper comer and the stratified flows, it can provide protection to mine with safe and effective production.展开更多
A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The researc...A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China.展开更多
The shortcomings of the present two formulae for describing column holdup are analyzed and deductions are made to find a new formula. The column holdup, Hw, described by the new formula is dimensional, and related to ...The shortcomings of the present two formulae for describing column holdup are analyzed and deductions are made to find a new formula. The column holdup, Hw, described by the new formula is dimensional, and related to soil solute transport kinesis and column physical properties. Compared with the other two column holdups, Hw is feasible to describe dimensional column holdup during solute transport process. The relationships between Hw and retardation factor, R, in different solute transport boundary conditions are established.展开更多
文摘To understand the dynamics of added nitrogen (N) in alpine meadow and the role of alpine plants and soil microorganisms in the retention of deposited N, the fate of 15 N labeled nitrate and ammonium salts was determined in an alpine meadow for two months. Two weeks after 15 N application, total recovery of 15 N from NO - 3_ 15 N was 73.5% while it was 78% from NH + 4_ 15 N. More 15 N was recovered in plants than in soil organic matter or in microbial biomass, irrespective of forms of N added. After one month, 70.6% of added NO - 3_ 15 N and 57.4% of NH + 4_ 15 N were recovered in soils and plants. 15 N recovered in soil organic matter decreased greatly while that recovered in plants varied little, irrespective of the form N. Compared with the results of two weeks after 15 N application, more NO - 3_ 15 N than NH + 4_ 15 N was recovered in microbial biomass. Total recovery was 58.4% (six weeks) and 67% (eight weeks) from NO - 3_ 15 N, and 43.1% and 49% from NH + 4_ 15 N, respectively. Both plants and soil microorganism recovered more NO - 3_ 15 N than NH + 4_ 15 N. But plants recovered more 15 N than soil microorganisms. During the whole experiment plants retained more NO - 3_N and 15 N than soil microorganisms while 15 N recovered in inorganic N pool did not exceed 1% due to lower amount of inorganic N. This indicates that plants play more important roles in the retention of deposited N although microbial biomass can be an important sink for deposited N in early days after N application.
基金Project supported by the Chinese Postdoctoral Foundation (No. 10129) and the Swedish Agricultural Science Research Foundation (N
文摘A model for simulating cadmium transport in a soil-plant system was built using a commercial simulating program named Powersim on the basis of input-output processes happening in the soil-plant system. Convective and dispersive transport processes of cadmium in soil profile are embedded. Simulations on a daily base have been done up to a total simulating time of 250 years. Results show that applications of sewage sludge and fertilizer at the simulated rates would only cause slight cadmium accumulations in each layer of the soil, and cadmium accumulation would be levelling off, reaching an equilibrium concentrations layer by layer downward after certain time. The time scale to reach an equilibrium concentration varies from 10 years for the top three layers to over 250 years for the bottom layers. Plant cadmium uptake would increase from 52μg m-2 under initial soil cadmium concentrations to 65μg m-2 under equilibrium soil cadmium concentrations, which would not exceed the maximum allowable cadmium concentration in wheat grains. Main parameters which influence cadmium accumulation and transport in soil are total cadmium input, rainfall, evaporation, plant uptake and soil properties.
基金Project (No. 3967002) supported by the National Natural Science Foundation of China.
文摘A pot experiment was carried out to investigate effect of ectomycorrhizal fungi on eucalyptus growth and K bio-mobilization from soils and clay minerals. In the experiment, sands mixed with soil, KCI-saturated vermiculate and mica, respectively, were used to nurse eucalyptus seedlings which were nonectomycorrhized or ectomycorrhized by an ectomycorrhizal fungus Pisolithus tinctorius strain XCI (Pt XC1) isolated from a forest soil from Xichang, Sichuan Province, China, and a worldwide well-known ectomycorrhizal fungus Pisolithus tinctorius strain 2144 (Pt 2144) obtained in Australia. More depletion of HCl-soluble K by mycorrhizas from the soil and minerals than nonmycorrhizas suggested that mycorrhizas had a great ability to mobilize K present in the interlayer and feldspar. Mycorrhizal seedlings depressed greatly K digested with HF-HCIO4 from substrates after consecutive extractions of soils and minerals by water, ammonium cetate and boiling HCl, while nonmycorrhizal seedlings reduced it little if any, showing that the mycorrhizal seedlings could mobilize and then utilize the structural K in mineral lattice. Ectomycorrhizal fungi played a very important role not only in promoting the growth of eucalyptus seedlings but also in mobilizing K in soils and minerals. The infection of Pt XC1 led to a better growth of eucalyptus seedlings and more K accumulation in the seedlings than that of Pt 2144. The large differences in K accumulation by the seedlings might be due to different abilities of the two ectomycorrhizal fungi to mobilize K in interlayer and lattice pools in the clay minerals.
基金Project (No. 3967002) supported by the National Natural Science Foundation of China.
文摘Ectomycorrhizal fungi, including Cenococcum geophilum SIV (Cg SIV), and Pisolithus tinctorius 2144 (Pt 2144), 441 (Pt 441) and XC1 (Pt XC1), were cultured in Pachlewski liquid medium with H2KPO4,KCl- saturated vermiculite and mica as K sources, respectively, to investigate the mechanism of K absorption and mobilization by the fungi. Fungal growth rate, K absorption and mobilization varied significantly among the fungal species. Faster growth and greater K accumulation in Pt XC1 than Pt 2 144, Pt 441 and Cg siv were observed. Ectomycorrhizal fungi depressed HCl-soluble K in minerals after successive extractions by water and NH4OAc. Ratio of the total amount of K, including water-, NH4OAc- and HCI-soluble K, lost from substrates to the K accumulated in fungal colonies was less than 60%. These reveal that the ectomycorrhizal fungi could utilize K in interlayer and structural pools, which are usually unavailable for plants in short period. Large differences in the depletion of K in interlayer and structural pools by fungi were observed at fungal harvest. Taking into account the nutrient absorption by ectomycorrhizal fungi in symbionts and the direct contact between hyphae and soils, the fungi species colonized on the root surfaces seemed to be related to the effectiveness of mycorrhizas to utilize K in soils. Ectomycorrhizal fungi differed in the efflux of protons and oxalate. Pt XC1 was observed to have greatest ability to effuse protons and oxalate among the fungi adopted in the experiment. Furthermore, the higher the concentrations of protons and oxalate in the liquid culture solutions, the larger the depletion of K in interlayer and structural pools in minerals by fungi. Protons could replace interlayer K and chelation of oxalate with Fe and Al in crystal lattice could cause weathering of clay minerals. So, protons and oxalate produced by ectomycorrhizal fungi might play an important role in K mobilization in these two pools.
基金Project (No. 970601) supported by the State Education Commission, China.
文摘Effects of humus fractions (fulvic acid, brown humic acid and grey humic acid) on the leachability and transferring activity of five types of mineral-bound Hg were investigated. Under the acid leaching condition: fulvic acid could promote leachability and vertical transference of all the mineral-bound Hg. Brown humic acid could retard the leaching and transferring processes of CaCO3-Hg, Fe2O3-Hg, MnO2-Hg and kaolinite Hg but not bentonite-Hg. Grey humic acid could greatly enhance residing ability of the mineral-bound Hg in the soil column and restrain them from vertical transferring. The effect of humus on leachability and transferring activity on the mineral-bound Hg was closely related to its ability to convert the mineral-bound Hg into organic-bound form and the transferability of the latter in the soil column. The characteristics of the mineral-bound Hg in speciation were the internal factors that determined the extent and rate of the influence of the humus.
文摘Aiming at the issue that mass of gas emission from mining gob and the gas exceeded in working face, gob air leakage field and gas migration regularity in downlink ventilation was studied. In consideration of the influence of natural wind pressure to analyze the stope face differential pressure, gob air leakage field distribution and gas migration regularity theoretically. Established a two-dimensional physical model with one source and one doab, and applied computational fluid dynamics analysis software Fluent to do numerical simulation, analyzed and contrasted to the areas of gob air leakage on size and gas emission from gob to working face on strength when using the downlink ventilation and uplink ventilation. When applied downward ventilation in stope face, the air leakage field of gob nearly working face, and the air leakage intensity were smaller than uplink, this can effectively reduce the gas emission from gob to working face; when used downlink ventilation, the air leakage airflow carry the lower amount of gas to doab than uplink ventilation, and more easily to mix the gas, reduced the possibility of gas accumulation in upper comer and the stratified flows, it can provide protection to mine with safe and effective production.
基金supported by the National Natural Science Foundation of China (Nos.51304072,51574112 and 51404100)the Excellent Youth Foundation of Henan Scientific Committee (No.164100510013)+2 种基金the Key Scientific Research Project of Colleges and Universities of Henan Province (No.15A440010)the Chinese Ministry of Education Science and Technology Research Project (No.213022A)the Doctoral Foundation of Henan Polytechnic University (No.B2013-007)
文摘A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China.
基金Project (No. 49901009) supported by the National Natural Science Foundation of China.
文摘The shortcomings of the present two formulae for describing column holdup are analyzed and deductions are made to find a new formula. The column holdup, Hw, described by the new formula is dimensional, and related to soil solute transport kinesis and column physical properties. Compared with the other two column holdups, Hw is feasible to describe dimensional column holdup during solute transport process. The relationships between Hw and retardation factor, R, in different solute transport boundary conditions are established.