The enhancement of chemical absorption of CO2 by K2CO3/H2O absorbents in the presence of activated carbon (AC) particles was investigated. The results show that the gas absorption rates can be enhanced significantly...The enhancement of chemical absorption of CO2 by K2CO3/H2O absorbents in the presence of activated carbon (AC) particles was investigated. The results show that the gas absorption rates can be enhanced significantly in the presence of AC particles, and the maximum enhancement factor 3.7 was observed at low stirring intensities. The enhancement factor increased rapidly with the solid loading during the initial period of absorption and then be- came mild gradually to a maximum value. Both the liquid-solid contact area and the probability of solid particles residing at the gas-liquid interface decreased with the increase of the particle size, leading to a negative effect on the enhancement of mass transfer. The influence of the particles on gas absorption decreased with the reaction rate. The stirring speed changed the interfacial coverage and mass transfer rate on the liquid side and consequently affected the mass transfer between the gas and liquid phases; the enhancement factor decreased with the stirring intensity. A heterogeneous two-zone model was proposed for predicting the enhancement factor and the calculated results agreed well with the experimental data.展开更多
Traditional ligand-field theory has to be improved by taking into account both 'pure electronic' contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of ...Traditional ligand-field theory has to be improved by taking into account both 'pure electronic' contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of improved ligand-field theory, R1, R2, R'3, R'2, and R'1 lines, U band, ground-state zero-field-splitting (GSZFS), and ground-state g factors of ruby and/or GSGG: Cr3+ as well as thermal shifts of GSZFS, R1 line and R2 line of ruby have been calculated.The results are in very good agreement with the experimental data. Moreover, it is found that the value of cubic-field parameter given by traditional ligand-field theory is inappropriately large. For thermal shifts of GSZFS, R1 line and R2 line of ruby, several conclusions have also been obtained.展开更多
This paper deals with the output improvement of heating and cooling cycle by using the work-fluid including phase change material.The experimental study is carried out by heat exchange between work-fluid and heat tran...This paper deals with the output improvement of heating and cooling cycle by using the work-fluid including phase change material.The experimental study is carried out by heat exchange between work-fluid and heat transfer surface.The work-fluid is flown to a high temperature or a low temperature heat transfer surface from the narrow path.In order to increase the amount of the heat transmission,a trace of Diethylether(boiling point 34.8 ℃),as a phase change material(PCM),is added to the work-fluid.The parameters of the experiment are additive amount of PCM,the rotational speed of the displacer piston and the temperature of heat transfer surface.It is clarified that the increasing of engine cycle output is brought by the PCM addition.The effect of PCM addition is evaluated by output ratio which is defined from the experimental cycle output data.The requirements for acquiring the increasing effect of output by adding PCM are clarified.展开更多
基金Supported by the National Natural Science Foundation of China (No.20176036).
文摘The enhancement of chemical absorption of CO2 by K2CO3/H2O absorbents in the presence of activated carbon (AC) particles was investigated. The results show that the gas absorption rates can be enhanced significantly in the presence of AC particles, and the maximum enhancement factor 3.7 was observed at low stirring intensities. The enhancement factor increased rapidly with the solid loading during the initial period of absorption and then be- came mild gradually to a maximum value. Both the liquid-solid contact area and the probability of solid particles residing at the gas-liquid interface decreased with the increase of the particle size, leading to a negative effect on the enhancement of mass transfer. The influence of the particles on gas absorption decreased with the reaction rate. The stirring speed changed the interfacial coverage and mass transfer rate on the liquid side and consequently affected the mass transfer between the gas and liquid phases; the enhancement factor decreased with the stirring intensity. A heterogeneous two-zone model was proposed for predicting the enhancement factor and the calculated results agreed well with the experimental data.
文摘Traditional ligand-field theory has to be improved by taking into account both 'pure electronic' contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of improved ligand-field theory, R1, R2, R'3, R'2, and R'1 lines, U band, ground-state zero-field-splitting (GSZFS), and ground-state g factors of ruby and/or GSGG: Cr3+ as well as thermal shifts of GSZFS, R1 line and R2 line of ruby have been calculated.The results are in very good agreement with the experimental data. Moreover, it is found that the value of cubic-field parameter given by traditional ligand-field theory is inappropriately large. For thermal shifts of GSZFS, R1 line and R2 line of ruby, several conclusions have also been obtained.
基金the Cooperative Research Program of IOES,Institute of Ocean Energy,Saga University.(Accept15004A)
文摘This paper deals with the output improvement of heating and cooling cycle by using the work-fluid including phase change material.The experimental study is carried out by heat exchange between work-fluid and heat transfer surface.The work-fluid is flown to a high temperature or a low temperature heat transfer surface from the narrow path.In order to increase the amount of the heat transmission,a trace of Diethylether(boiling point 34.8 ℃),as a phase change material(PCM),is added to the work-fluid.The parameters of the experiment are additive amount of PCM,the rotational speed of the displacer piston and the temperature of heat transfer surface.It is clarified that the increasing of engine cycle output is brought by the PCM addition.The effect of PCM addition is evaluated by output ratio which is defined from the experimental cycle output data.The requirements for acquiring the increasing effect of output by adding PCM are clarified.