In order to strengthen the leaching procedure,the chemical processes of leaching rare earths (RE) from the weathered crust elution-deposited rare earth ore were investigated frow the viewpoints of kinetics,hydrodynami...In order to strengthen the leaching procedure,the chemical processes of leaching rare earths (RE) from the weathered crust elution-deposited rare earth ore were investigated frow the viewpoints of kinetics,hydrodynamic and mass transfer.The results show that the leaching hydrodynamics follows the Darcy law.The leaching kinetics can be described by the shrinking core model;the leaching process is controlled by diffusion of porous solid layer;and the mass transfer can be described with Van Deemter equation.This provides a theoretic basis and a scientific approach with high efficiency and optimized extraction conditions in industrial practice.展开更多
Ultrafine tungsten carbide and fine cobalt as well as nano yttrium oxide powders were used as the raw materials. The effects of hot-press below the eutectic temperature and conventional liquid phase sintering on the s...Ultrafine tungsten carbide and fine cobalt as well as nano yttrium oxide powders were used as the raw materials. The effects of hot-press below the eutectic temperature and conventional liquid phase sintering on the structures and properties of WC-20Co-1Y2O3 cemented carbide were studied. It is shown that hot-pressed alloy has the character of isotropic properties and microstructure with homogeneous and ultrafine WC grains. However, the ultrafine and fully-densified structure is developed at the cost of the presence of large amount of cobalt-lake (unevenly distributed binder phase), and thus lower strength. Yttrium oxide in the alloy cannot play the role of grain growth inhibitor fully when cemented carbide with high content of cobalt and ultrafine raw materials is sintered at high liquid phase sintering temperature. Peculiar platelet-enhanced bi-model structure is formed in WC-20Co-1Y2O3 cemented carbide by conventional liquid phase sintering, which points out that yttrium oxide in the alloy facilitates the formation of plate-like WC grain.展开更多
基金Projects(50664004,50474022,50574069) supported by the National Natural Science Foundation of ChinaProjects(Q959612,Q972026) supported by the Natural Science Foundation of Jiangxi Province,China
文摘In order to strengthen the leaching procedure,the chemical processes of leaching rare earths (RE) from the weathered crust elution-deposited rare earth ore were investigated frow the viewpoints of kinetics,hydrodynamic and mass transfer.The results show that the leaching hydrodynamics follows the Darcy law.The leaching kinetics can be described by the shrinking core model;the leaching process is controlled by diffusion of porous solid layer;and the mass transfer can be described with Van Deemter equation.This provides a theoretic basis and a scientific approach with high efficiency and optimized extraction conditions in industrial practice.
文摘Ultrafine tungsten carbide and fine cobalt as well as nano yttrium oxide powders were used as the raw materials. The effects of hot-press below the eutectic temperature and conventional liquid phase sintering on the structures and properties of WC-20Co-1Y2O3 cemented carbide were studied. It is shown that hot-pressed alloy has the character of isotropic properties and microstructure with homogeneous and ultrafine WC grains. However, the ultrafine and fully-densified structure is developed at the cost of the presence of large amount of cobalt-lake (unevenly distributed binder phase), and thus lower strength. Yttrium oxide in the alloy cannot play the role of grain growth inhibitor fully when cemented carbide with high content of cobalt and ultrafine raw materials is sintered at high liquid phase sintering temperature. Peculiar platelet-enhanced bi-model structure is formed in WC-20Co-1Y2O3 cemented carbide by conventional liquid phase sintering, which points out that yttrium oxide in the alloy facilitates the formation of plate-like WC grain.