To investigate the effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg (A357) alloy, some novel Al-7.0Si-0.55Mg alloys added with different amount of Al-STi-1B-RE grain...To investigate the effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg (A357) alloy, some novel Al-7.0Si-0.55Mg alloys added with different amount of Al-STi-1B-RE grain refiner with different RE composition were prepared by vacuum-melting. The microstructure and fracture behavior of the AI-7.0Si-0.55Mg alloys with the grain refiners were observed by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and the mechanical properties of the alloys were tested in mechanical testing machine at room temperature. The observation of AI-Ti-B-RE morphology and internal structure of the particles reveals that it exhibits a TiAl3/Ti2Al20RE core-shell structure via heterogeneous TiB2 nuclei. The tensile strength of Al-7.0Si-0.55Mg alloys with Al-5Ti-1B-3.0RE grain refiner reaches the peak value at the same addition (0.2%) of grain refiner.展开更多
The effect of Mn substitution for partial Fe in RFe 11Ti on structure and magnetic properties of compounds was researched. RFe 7Mn 4Ti samples (R=Y,Tb,Dy,Ho,Er) were prepared by means of vacuum arc-melting and s...The effect of Mn substitution for partial Fe in RFe 11Ti on structure and magnetic properties of compounds was researched. RFe 7Mn 4Ti samples (R=Y,Tb,Dy,Ho,Er) were prepared by means of vacuum arc-melting and subsequent vacuum annealing. The structure and magnetic properties of RFe 7Mn 4Ti compounds were investigated by X-ray powder diffraction and magnetic measurements. The following conclusions were obtained: all the RFe tMn 4Ti compounds crystallize in the ThMn 12-type structure. The lattice constants and the unit-cell volume changed with the increase of atomic number for R=Y, Tb, Dy, Ho, and Er. The compensation characters appear for the DyFe 7Mn 4Ti and HoFe 7Mn 4Ti compounds, and the compensation temperatures were about 123 K and 90 K, respectively. The Curie temperature, the saturation magnetization, and saturation moment of RFe 7Mn 4Ti compounds were given.展开更多
In order to verify the feasibility of producing Mg−rare earth(RE)alloy by selective laser melting(SLM)process,the microstructure and mechanical properties of Mg−15Gd−1Zn−0.4Zr(wt.%)(GZ151K)alloy were investigated.The ...In order to verify the feasibility of producing Mg−rare earth(RE)alloy by selective laser melting(SLM)process,the microstructure and mechanical properties of Mg−15Gd−1Zn−0.4Zr(wt.%)(GZ151K)alloy were investigated.The results show that fine grains(~2μm),fine secondary phases and weak texture,were observed in the as-fabricated(SLMed)GZ151K Mg alloy.At room temperature,the SLMed GZ151K alloy has a yield strength(YS)of 345 MPa,ultimate tensile strength(UTS)of 368 MPa and elongation of 3.0%.After subsequent aging(200℃,64 h,T5 treatment),the YS,UTS and elongation of the SLMed-T5 alloy are 410 MPa,428 MPa and 3.4%,respectively,which are higher than those of the conventional cast-T6 alloy,especially with the YS increased by 122 MPa.The main strengthening mechanisms of the SLMed GZ151K alloy are fine grains,fine secondary phases and residual stress,while after T5 treatment,the YS of the alloy is further enhanced by precipitates.展开更多
Ultrafine oxide dispersion strengthening(ODS)-Mo and ODS-W alloy powders containing different types of oxide nanoparticles were successfully synthesized by spraying method(solid−liquid mixing method)combined with the ...Ultrafine oxide dispersion strengthening(ODS)-Mo and ODS-W alloy powders containing different types of oxide nanoparticles were successfully synthesized by spraying method(solid−liquid mixing method)combined with the reductions with carbon black and hydrogen in sequence.It is concluded that the solution concentration and type of rare earth oxide have no effect on the grain size of ODS-Mo alloy powder,but have obvious effect on that of ODS-W alloy powder.The higher the concentration of rare earth solution is,the smaller the average grain size of ODS-W alloy powder is.Furthermore,compared with doping with CeO_(2),the grain sizes of reduction products of La_(2)O_(3) and Y_(2)O_(3) doped WO_(3) are relatively larger.Compared with the undoped case,there is almost no change for grain size of ODS-Mo alloy powder,while the grain size of ODS-W alloy powder becomes much larger.This is probably due to the appearance of the composite oxide(such as La_(2)WO_(6))formed by the reaction between tungsten oxide and rare earth oxides,which promotes the heterogeneous nucleation and growth of tungsten grains during the reduction process of ODS-W,while there is no complex oxide composed of molybdenum and rare earth oxides in the reduction process of ODS-Mo.展开更多
基金Project(2012CB619503)supported by the Natioanl Basic Research Program of ChinaProject(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science&Technology Cooperation Program of China
文摘To investigate the effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg (A357) alloy, some novel Al-7.0Si-0.55Mg alloys added with different amount of Al-STi-1B-RE grain refiner with different RE composition were prepared by vacuum-melting. The microstructure and fracture behavior of the AI-7.0Si-0.55Mg alloys with the grain refiners were observed by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and the mechanical properties of the alloys were tested in mechanical testing machine at room temperature. The observation of AI-Ti-B-RE morphology and internal structure of the particles reveals that it exhibits a TiAl3/Ti2Al20RE core-shell structure via heterogeneous TiB2 nuclei. The tensile strength of Al-7.0Si-0.55Mg alloys with Al-5Ti-1B-3.0RE grain refiner reaches the peak value at the same addition (0.2%) of grain refiner.
文摘The effect of Mn substitution for partial Fe in RFe 11Ti on structure and magnetic properties of compounds was researched. RFe 7Mn 4Ti samples (R=Y,Tb,Dy,Ho,Er) were prepared by means of vacuum arc-melting and subsequent vacuum annealing. The structure and magnetic properties of RFe 7Mn 4Ti compounds were investigated by X-ray powder diffraction and magnetic measurements. The following conclusions were obtained: all the RFe tMn 4Ti compounds crystallize in the ThMn 12-type structure. The lattice constants and the unit-cell volume changed with the increase of atomic number for R=Y, Tb, Dy, Ho, and Er. The compensation characters appear for the DyFe 7Mn 4Ti and HoFe 7Mn 4Ti compounds, and the compensation temperatures were about 123 K and 90 K, respectively. The Curie temperature, the saturation magnetization, and saturation moment of RFe 7Mn 4Ti compounds were given.
基金financial supports from the National Key Research and Development Program of China(Nos.2016YFB0301000,2016YFB0701204)the National Natural Science Foundation of China(No.51821001).
文摘In order to verify the feasibility of producing Mg−rare earth(RE)alloy by selective laser melting(SLM)process,the microstructure and mechanical properties of Mg−15Gd−1Zn−0.4Zr(wt.%)(GZ151K)alloy were investigated.The results show that fine grains(~2μm),fine secondary phases and weak texture,were observed in the as-fabricated(SLMed)GZ151K Mg alloy.At room temperature,the SLMed GZ151K alloy has a yield strength(YS)of 345 MPa,ultimate tensile strength(UTS)of 368 MPa and elongation of 3.0%.After subsequent aging(200℃,64 h,T5 treatment),the YS,UTS and elongation of the SLMed-T5 alloy are 410 MPa,428 MPa and 3.4%,respectively,which are higher than those of the conventional cast-T6 alloy,especially with the YS increased by 122 MPa.The main strengthening mechanisms of the SLMed GZ151K alloy are fine grains,fine secondary phases and residual stress,while after T5 treatment,the YS of the alloy is further enhanced by precipitates.
基金financial support from the National Natural Science Foundation of China (No.51734002)。
文摘Ultrafine oxide dispersion strengthening(ODS)-Mo and ODS-W alloy powders containing different types of oxide nanoparticles were successfully synthesized by spraying method(solid−liquid mixing method)combined with the reductions with carbon black and hydrogen in sequence.It is concluded that the solution concentration and type of rare earth oxide have no effect on the grain size of ODS-Mo alloy powder,but have obvious effect on that of ODS-W alloy powder.The higher the concentration of rare earth solution is,the smaller the average grain size of ODS-W alloy powder is.Furthermore,compared with doping with CeO_(2),the grain sizes of reduction products of La_(2)O_(3) and Y_(2)O_(3) doped WO_(3) are relatively larger.Compared with the undoped case,there is almost no change for grain size of ODS-Mo alloy powder,while the grain size of ODS-W alloy powder becomes much larger.This is probably due to the appearance of the composite oxide(such as La_(2)WO_(6))formed by the reaction between tungsten oxide and rare earth oxides,which promotes the heterogeneous nucleation and growth of tungsten grains during the reduction process of ODS-W,while there is no complex oxide composed of molybdenum and rare earth oxides in the reduction process of ODS-Mo.