Multicolor luminescent rare-earth ion-doped Y2O3 nanocrystals (NCs) were prepared by a solvethermal method. The as-synthesized NCs yielded nanosheets, nanowires (NWs) and nanorods (NRs) with the increase of alka...Multicolor luminescent rare-earth ion-doped Y2O3 nanocrystals (NCs) were prepared by a solvethermal method. The as-synthesized NCs yielded nanosheets, nanowires (NWs) and nanorods (NRs) with the increase of alkali (NaOH) in oleic acid system. Moreover, Y203 nanowires with controllable size have also been obtained. After sintering, the PL intensity of Y2O3:Ln3+ nanocrystals increased with the changed morphology of the precursor, that is, Y(OH)3 nanocrystals. Both downconversion (red emission for Y2O3:Eu3+ and green emission for Y2O3:Tb3+) and upconversion (red emission for Y2O3:Yb/Er3+) luminescence of the as-prepared nanocrystals have been demonstrated in this work. We also found that the PL intensity of Y2O3:Ln3+ NCs dispersed in polar solvent was stronger than that in nonpolar solvent. Their up/downconversion fluorescence and controllable morphology might promise further fundamental research and biochemistry such as nanoscale optoelectronics, nanolasers, and ultrasensitive multicolor biolables.展开更多
Rare earth doping has been widely applied in many functional nanomaterials with desirable properties and functions,which would have a significant effect on the growth process of the materials.However,the controlling s...Rare earth doping has been widely applied in many functional nanomaterials with desirable properties and functions,which would have a significant effect on the growth process of the materials.However,the controlling strategy is limited into high concentration of lanthanide doping,which produces concentration quenching of the lanthanide ion luminescence with an increase in the Ln^(3+)concentration,resulting in lowering the fluorescence quantum yield of lanthanide ion.Herein,for the first time,we demonstrate simultaneous control of the structures and luminescence properties of BaCO_3nanocrystals via a small amount of Tb^(3+)doping strategy.In fact,Tb^(3+)would partially occupy Ba^(2+)sites,resulting in the changes to the structures of the BaCO_3nanocrystals,which is primarily determined by charge modulation,including the contributions from the surfaces of crystal nuclei and building blocks.These structurally modified nanocrystals exhibit tunable luminescence properties,thus emerging as potential candidates for photonic devices such as light-emitting diodes and color displays.展开更多
文摘Multicolor luminescent rare-earth ion-doped Y2O3 nanocrystals (NCs) were prepared by a solvethermal method. The as-synthesized NCs yielded nanosheets, nanowires (NWs) and nanorods (NRs) with the increase of alkali (NaOH) in oleic acid system. Moreover, Y203 nanowires with controllable size have also been obtained. After sintering, the PL intensity of Y2O3:Ln3+ nanocrystals increased with the changed morphology of the precursor, that is, Y(OH)3 nanocrystals. Both downconversion (red emission for Y2O3:Eu3+ and green emission for Y2O3:Tb3+) and upconversion (red emission for Y2O3:Yb/Er3+) luminescence of the as-prepared nanocrystals have been demonstrated in this work. We also found that the PL intensity of Y2O3:Ln3+ NCs dispersed in polar solvent was stronger than that in nonpolar solvent. Their up/downconversion fluorescence and controllable morphology might promise further fundamental research and biochemistry such as nanoscale optoelectronics, nanolasers, and ultrasensitive multicolor biolables.
基金supported by the National Natural Science Foundation of China (21403189, 21371149) Natural Science Foundation of Hebei Province (B2017203198)+1 种基金China Postdoctoral Science Foundation (2014M551047)Yanshan University Doctoral Foundation (B790)
文摘Rare earth doping has been widely applied in many functional nanomaterials with desirable properties and functions,which would have a significant effect on the growth process of the materials.However,the controlling strategy is limited into high concentration of lanthanide doping,which produces concentration quenching of the lanthanide ion luminescence with an increase in the Ln^(3+)concentration,resulting in lowering the fluorescence quantum yield of lanthanide ion.Herein,for the first time,we demonstrate simultaneous control of the structures and luminescence properties of BaCO_3nanocrystals via a small amount of Tb^(3+)doping strategy.In fact,Tb^(3+)would partially occupy Ba^(2+)sites,resulting in the changes to the structures of the BaCO_3nanocrystals,which is primarily determined by charge modulation,including the contributions from the surfaces of crystal nuclei and building blocks.These structurally modified nanocrystals exhibit tunable luminescence properties,thus emerging as potential candidates for photonic devices such as light-emitting diodes and color displays.