期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
稀土低铬铸铁磨球的生产 被引量:14
1
作者 王仲珏 《现代铸铁》 CAS 2000年第3期45-47,共3页
关键词 稀土低铬铸铁磨球 生产 球磨机 造型工艺
下载PDF
低铬铜稀土球新产品开发中新工艺的应用
2
作者 林良超 《冶金矿山与冶金设备》 1995年第6期26-28,共3页
关键词 磨矿机 磨球 低铬铜磨球 稀土磨球
下载PDF
Hydrogen storage performances of as-milled REMg_(11)Ni(RE=Y, Sm) alloys catalyzed by MoS_2 被引量:2
3
作者 Yang-huan ZHANG Wei ZHANG +4 位作者 Ze-ming YUAN Wen-gang BU Yan QI Xiao-ping DONG Shi-hai GUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第9期1828-1837,共10页
To compare the hydrogen storage performances of as-milled REMg11Ni-5MoS2(mass fraction)(RE=Y,Sm)alloys,which were catalyzed by MoS2,the corresponding alloys were prepared.The hydrogen storage performaces of these allo... To compare the hydrogen storage performances of as-milled REMg11Ni-5MoS2(mass fraction)(RE=Y,Sm)alloys,which were catalyzed by MoS2,the corresponding alloys were prepared.The hydrogen storage performaces of these alloys were measured by various methods,such as XRD,TEM,automatic Sievert apparatus,TG and DSC.The results reveal that both of the as-milled alloys exhibit a nanocrystalline and amorphous structure.The RE=Y alloy shows a larger hydrogen absorption capacity,faster hydriding rate,lower initial hydrogen desorption temperature,superior hydrogen desorption property,and lower hydrogen desorption activation energy,which is thought to be the reason of its better hydrogen storage kinetics,as compared with RE=Sm alloy. 展开更多
关键词 Mg-based alloy ball milling CATALYST rare earth element hydrogen storage performance
下载PDF
Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery 被引量:4
4
作者 Steff Van Loy Koen Binnemans Tom Van Gerven 《Engineering》 2018年第3期398-405,共8页
Rare-earth elements (REEs) are essential metals for the design and development of sustainable energy applications, Recycling these elements from waste streams enriched in them is crucial for securing an independent ... Rare-earth elements (REEs) are essential metals for the design and development of sustainable energy applications, Recycling these elements from waste streams enriched in them is crucial for securing an independent future supply for sustainable applications, This study compares the mechanisms of mechan- ical activation prior to a hydrometallurgical acid-leaching process and a solvometallurgical mechanochemical leaching process for the recovery of REEs from green lamp phosphor, LaPO4:Ce3+, Th3+, After 60 min of processing time, the REE leaching rates showed a significant enhancement of 60% after cycled mechanical activation, and 98% after the combined mechanochemical leaching process, High-resolution transmission electron microscopy (HR-TEM) imaging disclosed the cause for the improved REE leaching rates: The improved leaching and leaching patterns could he attributed to changes in the crystal morphology from monocrystalline to polycrystalline, Reduction of the crystallite size to the nanoscale in a polycrystalline material creates irregular packing of chemical units, resulting in an increase in defect-rich grain boundaries in the crystals, which enhances the leaching process, A solvometallurgical method was developed to combine the mechanical activation and leaching process into a single step, which is beneficial for operational cost, This results in an efficient and simple process that provides an alternative and greener recycling route for lamp phosphor waste, 展开更多
关键词 MECHANOCHEMISTRY Rare-earth elements Lamp phosphor waste Ball-milling Solvometallurgy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部