期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
基于核稀疏保持投影的SAR目标特征提取方法研究
1
作者 王欢 熊水金 陈荣华 《现代信息科技》 2023年第21期20-23,27,共5页
文章提出一种新的特征提取方法,将核稀疏保持投影(KSPP)方法运用到合成孔径雷达(SAR)目标识别中。该方法将原始目标函数投影到高维特征空间,在高维特征空间求得样本的稀疏系数,将所有样本的稀疏系数组成稀疏重构矩阵,利用稀疏重构矩阵... 文章提出一种新的特征提取方法,将核稀疏保持投影(KSPP)方法运用到合成孔径雷达(SAR)目标识别中。该方法将原始目标函数投影到高维特征空间,在高维特征空间求得样本的稀疏系数,将所有样本的稀疏系数组成稀疏重构矩阵,利用稀疏重构矩阵构造目标函数求得样本的特征向量,最后利用SVM分类器对目标进行分类识别。基于MSTAR提供的实测SAR数据对方法进行验证,结果表明该方法能够有效地提高目标识别结果,且对目标的方位角不敏感,是一种有效的SAR目标特征提取方法。 展开更多
关键词 稀疏保持投影 特征提取 SAR SVM分类器 MSTAR
下载PDF
鉴别稀疏保持投影的人脸识别算法 被引量:4
2
作者 李昆仑 耿雪菲 曹静媛 《小型微型计算机系统》 CSCD 北大核心 2017年第2期376-380,共5页
在人脸识别领域中遇到的数据往往是高维的,一般会导致维数灾难问题.近年来稀疏表示(Sparse representation,SR)在处理人脸识别等问题时显示出一定的有效性,而后出现的稀疏保持投影(Sparse preserving projections,SPP)算法又以保持数据... 在人脸识别领域中遇到的数据往往是高维的,一般会导致维数灾难问题.近年来稀疏表示(Sparse representation,SR)在处理人脸识别等问题时显示出一定的有效性,而后出现的稀疏保持投影(Sparse preserving projections,SPP)算法又以保持数据的稀疏表示结构为目的成功应用于人脸识别领域,但仍存在一些问题.本文针对SPP算法在人脸识别中存在的问题进行了改进,提出了一种叫做鉴别稀疏保持投影(Discriminant sparsity preserving projection,DSPP)的算法.该算法有以下两方面的改进:(1)针对SPP算法未能有效地利用类标签信息的问题,本文利用最大散度差准则(Maximum scatter difference criterion,MSDC)重建SPP算法的目标函数;(2)针对SPP算法计算复杂度高的问题,本文利用带有相同类标签的训练样本用于稀疏重构.在ORL库、CAS-PEAL库、IMM库上的大量实验结果验证了算法的有效性. 展开更多
关键词 人脸识别 稀疏表示 稀疏保持投影 鉴别稀疏保持投影 最大散度差准则
下载PDF
稀疏局部保持投影 被引量:4
3
作者 郑忠龙 黄小巧 +1 位作者 贾泂 杨杰 《计算机学报》 EI CSCD 北大核心 2014年第9期2038-2046,共9页
LASSO(Least Absolute Shrinkage and Selection Operator)是1范数和2范数混合学习的一种理论框架,基于LASSO提出了局部保持投影的稀疏回归算法SpLPP及其广义的正则化形式RSpLPP,并从理论上证明了所提模型的收敛性及求解算法,给出了算... LASSO(Least Absolute Shrinkage and Selection Operator)是1范数和2范数混合学习的一种理论框架,基于LASSO提出了局部保持投影的稀疏回归算法SpLPP及其广义的正则化形式RSpLPP,并从理论上证明了所提模型的收敛性及求解算法,给出了算法的复杂性分析.所提算法同时具有特征选择、降维的特性,在有监督学习、无监督学习两种任务情况下,都可以应用该算法.在人工数据集和真实数据集上进行的大量仿真实验,取得了较好的结果,证明了所提算法的有效性. 展开更多
关键词 稀疏学习 局部保持投影 流行学习 正则化
下载PDF
核稀疏保持投影及生物特征识别应用 被引量:11
4
作者 殷俊 杨万扣 《电子学报》 EI CAS CSCD 北大核心 2013年第4期639-645,共7页
稀疏表示系数包含较强的鉴别信息,稀疏保持投影(Sparsity Preserving Projections,SPP)利用稀疏表示系数进行特征提取.本文通过核方法获取高维特征空间的核稀疏表示系数,并利用核稀疏表示系数构造邻接矩阵,提出核稀疏保持投影(Kernel Sp... 稀疏表示系数包含较强的鉴别信息,稀疏保持投影(Sparsity Preserving Projections,SPP)利用稀疏表示系数进行特征提取.本文通过核方法获取高维特征空间的核稀疏表示系数,并利用核稀疏表示系数构造邻接矩阵,提出核稀疏保持投影(Kernel Sparsity Preserving Projections,KSPP).核稀疏表示系数比稀疏表示系数包含更强的鉴别信息,因此KSPP可以比SPP提取更有效的鉴别特征.在多个数据库上的生物特征识别实验,KSPP都取得了不错的实验结果. 展开更多
关键词 稀疏表示 邻接矩阵 稀疏保持投影 核方法
下载PDF
基于局部保持投影和稀疏表示的无监督特征选择方法 被引量:8
5
作者 简彩仁 陈晓云 《模式识别与人工智能》 EI CSCD 北大核心 2015年第3期247-252,共6页
传统基于过滤的特征选择方法仅从统计或几何角度分别对数据集的每个特征计算某种得分选择特征,而忽略不同特征之间存在的联系.为解决该问题,利用局部保持投影和稀疏表示的优点,提出新的无监督特征选择算法.该方法通过限制特征权重的非... 传统基于过滤的特征选择方法仅从统计或几何角度分别对数据集的每个特征计算某种得分选择特征,而忽略不同特征之间存在的联系.为解决该问题,利用局部保持投影和稀疏表示的优点,提出新的无监督特征选择算法.该方法通过限制特征权重的非负性和稀疏性选择特征.在4个基因表达数据集和2个图像数据集上的实验表明该方法是有效的. 展开更多
关键词 局部保持投影 稀疏表示 无监督 特征选择 聚类
下载PDF
一种鉴别稀疏局部保持投影的人脸识别算法 被引量:7
6
作者 杨艺芳 王宇平 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第6期54-60,共7页
为解决鉴别稀疏邻域保持嵌入(DSNPE)算法中类间离散度构造复杂的问题,提出了一个新的维数约简算法即鉴别稀疏局部保持投影的人脸识别算法(DSLPP)。首先利用样本集中各类样本的平均向量构造字典,通过保持各类样本平均向量的稀疏重构关系... 为解决鉴别稀疏邻域保持嵌入(DSNPE)算法中类间离散度构造复杂的问题,提出了一个新的维数约简算法即鉴别稀疏局部保持投影的人脸识别算法(DSLPP)。首先利用样本集中各类样本的平均向量构造字典,通过保持各类样本平均向量的稀疏重构关系,提出一个新的无参数类间离散度;再通过同时最大化类间离散度和同时最小化类内紧凑度的准则来寻找最优投影方向;最后采用最近邻分类器进行人脸分类识别。由于所采用的类间离散度最大限度地扩大了不同类别中样本之间的差异,因此DSLPP算法具有更强的类间判别力,其识别率得到了明显提高;此外,字典的简化构造降低了算法的计算复杂度。在Yale、UMIST和AR人脸库上的实验结果表明:DSLPP算法在Yale、UMIST库上的平均识别率及AR库上的最高识别率分别达83.38%、95.72%和83.71%,较其他传统方法的识别率有明显提高;在UMIST库上的实验结果表明,DSLPP算法较DSNPE算法的平均计算时间减少了81.7%。 展开更多
关键词 人脸识别 维数约简 稀疏重构 局部保持投影
下载PDF
成对约束指导的稀疏保持投影 被引量:1
7
作者 齐鸣鸣 《计算机应用》 CSCD 北大核心 2012年第12期3315-3318,共4页
针对稀疏保持投影的稀疏重构过程中监督信息不足的问题,提出一种成对约束指导的稀疏保持投影算法。该算法在训练样本数据的稀疏重构的过程中,通过引入正约束和负约束监督信息指导稀疏重构,使得稀疏保持投影有效地融合了约束监督信息。在... 针对稀疏保持投影的稀疏重构过程中监督信息不足的问题,提出一种成对约束指导的稀疏保持投影算法。该算法在训练样本数据的稀疏重构的过程中,通过引入正约束和负约束监督信息指导稀疏重构,使得稀疏保持投影有效地融合了约束监督信息。在UMIST、YALE和AR人脸库人脸数据集上的实验结果表明,与无监督的稀疏保持投影相比,该方法提高了基于最近近邻分类算法的5%~15%识别准确率,有效地提高了降维分类性能。 展开更多
关键词 降维 稀疏重构 成对约束 稀疏保持投影
下载PDF
基于多核稀疏保持投影的多特征集典型相关分析的水下目标特征融合方法 被引量:1
8
作者 杨宏晖 伊淑珍 《西北工业大学学报》 EI CAS CSCD 北大核心 2019年第1期87-92,共6页
针对水下目标识别特征样本集高维小样本问题,提出了基于多核稀疏保持投影的多特征集典型相关分析的水下目标特征融合方法。该方法用多特征集典型相关分析算法对多域特征的整体相关程度进行定量分析,去除冗余和噪声特征,实现多域特征的融... 针对水下目标识别特征样本集高维小样本问题,提出了基于多核稀疏保持投影的多特征集典型相关分析的水下目标特征融合方法。该方法用多特征集典型相关分析算法对多域特征的整体相关程度进行定量分析,去除冗余和噪声特征,实现多域特征的融合,并利用多核稀疏保持投影算法,对提取的多域特征样本的稀疏重构性加以约束,增强了特征的判别能力。利用实测舰船辐射噪声数据验证基于核稀疏保持投影的多特征集典型相关分析的水下目标特征融合方法的有效性,与多特征集典型相关分析方法和核稀疏保持投影典型相关分析方法进行了对比,实验研究表明,提出的方法可以有效去除冗余和噪声特征,实现多域水下目标特征的融合,提高水下目标的识别正确率。 展开更多
关键词 多特征集典型相关分析 稀疏保持投影算法 特征融合 水下目标识别
下载PDF
基于改进的稀疏保持投影的SAR目标特征提取与识别 被引量:1
9
作者 韩萍 王欢 《雷达学报(中英文)》 CSCD 2015年第6期674-680,共7页
提出了一种改进的稀疏保持投影(Sparsity Preserving Projections,SPP)特征提取方法。该方法将SPP特征提取与局部保持投影(Locality Preserving Projection,LPP)特征提取思想相结合,构造新的目标函数求解投影向量,保证了投影空间内样本... 提出了一种改进的稀疏保持投影(Sparsity Preserving Projections,SPP)特征提取方法。该方法将SPP特征提取与局部保持投影(Locality Preserving Projection,LPP)特征提取思想相结合,构造新的目标函数求解投影向量,保证了投影空间内样本的稀疏重构误差达到最小的同时使同类样本间距最小。利用美国运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)实测SAR数据进行实验,实验结果表明在不利用目标成像方位信息情况下平均识别率最高可达97.81%,明显地提高了目标的识别结果,是一种有效的SAR目标识别方法。 展开更多
关键词 合成孔径雷达 自动目标识别 稀疏保持投影 特征提取
下载PDF
稀疏近邻保持投影
10
作者 罗庆云 陈敏 赵巾帼 《计算机应用与软件》 CSCD 北大核心 2013年第6期266-268,294,共4页
从全局特征保持和局部特征保持的角度出发,提出一种稀疏近邻保持投影(SNPE)算法。该算法融合了稀疏重构信息和局部近邻重构信息。投影后的低维数据保持了高维数据的全局几何结构信息和局部近邻近似非线性的结构信息。在Yale、AR和UMIST... 从全局特征保持和局部特征保持的角度出发,提出一种稀疏近邻保持投影(SNPE)算法。该算法融合了稀疏重构信息和局部近邻重构信息。投影后的低维数据保持了高维数据的全局几何结构信息和局部近邻近似非线性的结构信息。在Yale、AR和UMIST上的实验表明所提算法是有效的。 展开更多
关键词 降维 稀疏保持投影 近邻保持嵌入 加权融合 平衡参数
下载PDF
基于核稀疏保持投影的典型相关分析算法 被引量:4
11
作者 张荣 孙权森 《数据采集与处理》 CSCD 北大核心 2017年第1期111-118,共8页
模式识别的技术核心就是特征提取,而特征融合则是对特征提取方法的强力补充,对于提高特征的识别效率具有重要作用。本文基于稀疏表示方法,将稀疏表示方法用到高维度空间,并利用核方法在高维度空间进行稀疏表示,用其计算核稀疏表示系数,... 模式识别的技术核心就是特征提取,而特征融合则是对特征提取方法的强力补充,对于提高特征的识别效率具有重要作用。本文基于稀疏表示方法,将稀疏表示方法用到高维度空间,并利用核方法在高维度空间进行稀疏表示,用其计算核稀疏表示系数,同时研究了核稀疏保持投影算法(Kernel sparsity preserve projection,KSPP)。将KSPP引入到典型相关分析算法(Canonical correlation analysis,CCA),研究了基于核稀疏保持投影的典型相关分析算法(Kernel sparsity preserve canonical correlation analysis,K-SPCCA)。在多特征手写体数据库和人脸图像数据库上分别证实了本文提出方法的可靠性和有效性。 展开更多
关键词 特征提取 稀疏表示 稀疏保持投影 典型相关分析
下载PDF
监督型稀疏保持投影 被引量:4
12
作者 相文楠 赵建立 《计算机工程与应用》 CSCD 北大核心 2011年第29期186-188,共3页
稀疏保持投影(SPP)是最近提出的一种无监督降维方法,因此无法利用标号数据提供的监督信息。为此,对SPP进行了扩展,给出了两种监督型稀疏保持投影算法:基于稀疏保持的判别分析(SPP+LDA)和监督稀疏保持投影(S2PP)。前者通过在SPP变换的子... 稀疏保持投影(SPP)是最近提出的一种无监督降维方法,因此无法利用标号数据提供的监督信息。为此,对SPP进行了扩展,给出了两种监督型稀疏保持投影算法:基于稀疏保持的判别分析(SPP+LDA)和监督稀疏保持投影(S2PP)。前者通过在SPP变换的子空间内进行线性判别分析(LDA)达到利用数据间稀疏重建关系和监督信息的目的;后者借助数据标号直接修正SPP构建的稀疏重建图在SPP中自然地融入监督信息。分析了两种算法的优缺点,在两个常用的人脸数据集(Yale和AR)上验证了两者的可行性及有效性。 展开更多
关键词 稀疏保持投影 线性判别分析 降维 人脸识别
下载PDF
基于全局-局部保持投影的稀疏降维方法 被引量:1
13
作者 江粼 房小兆 滕少华 《江西师范大学学报(自然科学版)》 CAS 北大核心 2021年第1期46-54,共9页
该文提出了一种基于全局-局部结构保持的稀疏投影模型(GLSPP).通过对投影数据进行线性重构来保持数据的全局结构,从而保留投影数据的全局信息.通过约束重构系数矩阵与相似性矩阵的相似性来保持全局保持数据和局部保持投影数据的一致性.... 该文提出了一种基于全局-局部结构保持的稀疏投影模型(GLSPP).通过对投影数据进行线性重构来保持数据的全局结构,从而保留投影数据的全局信息.通过约束重构系数矩阵与相似性矩阵的相似性来保持全局保持数据和局部保持投影数据的一致性.同时,对重构系数矩阵和相似性矩阵进行稀疏约束,保留主要信息,以减少冗余信息的干扰.在公开的4个人脸与物体数据集上的实验结果显示:该方法具有较高的分类准确率. 展开更多
关键词 局部结构保持投影 线性重构 稀疏约束 降维
下载PDF
半监督稀疏近邻保持投影 被引量:4
14
作者 吴振宇 侯冰洋 +2 位作者 王辉兵 刘胜蓝 冯林 《系统工程与电子技术》 EI CSCD 北大核心 2018年第4期934-940,共7页
提出了改进的稀疏子空间学习方法。首先,提出了稀疏近邻相关性重构模型,该模型通过提取样本间的局部信息和标记样本的标签信息,解决了稀疏子空间学习的全局特征导致数据描述不充分的问题;其次,利用半监督技术,引入正则化参数对无标签判... 提出了改进的稀疏子空间学习方法。首先,提出了稀疏近邻相关性重构模型,该模型通过提取样本间的局部信息和标记样本的标签信息,解决了稀疏子空间学习的全局特征导致数据描述不充分的问题;其次,利用半监督技术,引入正则化参数对无标签判别特征和标签判别特征进行特征融合,提高了基于稀疏近邻相关性重构的子空间学习算法的性能。实验结果表明,该方法具有较高的分类性能和识别率,此外,稀疏近邻相关性重构在提取判别信息时具有良好的稳定性。 展开更多
关键词 子空间学习 半监督 稀疏近邻保持投影
下载PDF
基于自变量简约的大规模稀疏多目标优化
15
作者 丘雪瑶 辜方清 《计算机应用研究》 CSCD 北大核心 2024年第6期1663-1668,共6页
现有的大多数进化算法在求解大规模优化问题时性能会随决策变量维数的增长而下降。通常,多目标优化的Pareto有效解集是自变量空间的一个低维流形,该流形的维度远小于自变量空间的维度。鉴于此,提出一种基于自变量简约的多目标进化算法... 现有的大多数进化算法在求解大规模优化问题时性能会随决策变量维数的增长而下降。通常,多目标优化的Pareto有效解集是自变量空间的一个低维流形,该流形的维度远小于自变量空间的维度。鉴于此,提出一种基于自变量简约的多目标进化算法求解大规模稀疏多目标优化问题。该算法通过引入局部保持投影降维,保留原始自变量空间中的局部近邻关系,并设计一个归档集,将寻找到的非劣解存入其中进行训练,以提高投影的准确性。将该算法与四种流行的多目标进化算法在一系列测试问题和实际应用问题上进行了比较。实验结果表明,所提算法在解决稀疏多目标问题上具有较好的效果。因此,通过自变量简约能降低问题的求解难度,提高算法的搜索效率,在解决大规模稀疏多目标问题方面具有显著的优势。 展开更多
关键词 局部保持投影 进化算法 大规模稀疏多目标优化问题
下载PDF
一种基于半监督稀疏保持投影的人脸识别新方法
16
作者 卫雨彤 林克正 《黑龙江大学自然科学学报》 CAS 北大核心 2017年第4期499-504,共6页
针对现实生活中同时存在的无标签样本与标签样本的问题,将稀疏保持投影算法拓展到半监督框架上,提出了一种新的半监督稀疏保持投影算法,实现所有标签样本的充分利用,以保持标签样本给投影子空间的判别能力,建立样本的空间分布信息,提高... 针对现实生活中同时存在的无标签样本与标签样本的问题,将稀疏保持投影算法拓展到半监督框架上,提出了一种新的半监督稀疏保持投影算法,实现所有标签样本的充分利用,以保持标签样本给投影子空间的判别能力,建立样本的空间分布信息,提高了人脸识别的精确度。通过(Carngie Mellon University,CMU)人脸数据集对半监督稀疏保持投影算法的有效性进行了验证,结果表明该算法具有较好的人脸识别效果,降低了人脸识别的时间复杂度,提高了人脸识别的精度。 展开更多
关键词 人脸识别 维数约简 半监督稀疏保持投影 识别精度 数据分类
下载PDF
一种改进的稀疏保持投影算法在高光谱数据降维中的应用
17
作者 陈璞花 《火控雷达技术》 2016年第1期7-12,共6页
稀疏保持投影由于在低维空间中很好的保持了原空间中样本的稀疏表示关系,在高光谱数据的维数约减中取得了很好的效果,但是其中并没有引入任何的判别信息,并且,稀疏保持投影在计算图矩阵时的时间复杂度较高。针对以上两个问题,本文提出... 稀疏保持投影由于在低维空间中很好的保持了原空间中样本的稀疏表示关系,在高光谱数据的维数约减中取得了很好的效果,但是其中并没有引入任何的判别信息,并且,稀疏保持投影在计算图矩阵时的时间复杂度较高。针对以上两个问题,本文提出了一种改进的稀疏保持投影方法,利用聚类获取不精确的类标信息,并利用该类标信息引导稀疏图的构造,在增加判别能力的同时降低时间复杂度。该方法在两组常用的高光谱数据上进行了实验。实验结果表明改进策略可以一定程度上提高稀疏保持投影的性能,同时还可大大缩短算法的运行时间。 展开更多
关键词 稀疏保持投影 维数约减 复杂度
下载PDF
基于PA-VME与SPP的机械设备故障诊断方法的研究
18
作者 柯伟 金仲平 +1 位作者 董灵军 吕信策 《机械制造与自动化》 2024年第2期60-66,74,共8页
针对传统的故障识别方法存在信号质量低和诊断精度差等问题,提出一种参数自适应变分模式提取(PA-VME)和稀疏保持投影(SPP)相结合的数据驱动机械故障诊断新方法。结合相关系数、L-峭度和信息熵构造一个新的指标L_(FCI)并将其作为适应度函... 针对传统的故障识别方法存在信号质量低和诊断精度差等问题,提出一种参数自适应变分模式提取(PA-VME)和稀疏保持投影(SPP)相结合的数据驱动机械故障诊断新方法。结合相关系数、L-峭度和信息熵构造一个新的指标L_(FCI)并将其作为适应度函数,采用粒子群算法对变分模式提取的内部参数进行优化,从而形成PA-VME模型并将其用于振动信号的模式分解;根据构造的指标能够反映信息有序度的原则,选取有效的模式分量并计算得到高维特征数据集;利用SPP将数据集通过权重矩阵投影到低维空间,实现对高维特征数据的降维和聚类分析。通过对仿真信号和实验台的故障信号进行分析,证明其对不同类型机械故障的识别精度可以达到96.87%。 展开更多
关键词 参数自适应变分模式提取 稀疏保持投影 特征提取 机械设备 故障诊断
下载PDF
稀疏保持典型相关分析及在特征融合中的应用 被引量:22
19
作者 侯书东 孙权森 《自动化学报》 EI CSCD 北大核心 2012年第4期659-665,共7页
稀疏保持投影(Sparsity preserving projections,SPP)由于保持了数据间的稀疏重构性,因而获取的投影向量满足旋转、尺度和平移的不变性,并能够在无标签的情况下提取样本的自然鉴别信息,在人脸识别领域取得了较为成功的应用.本文在典型... 稀疏保持投影(Sparsity preserving projections,SPP)由于保持了数据间的稀疏重构性,因而获取的投影向量满足旋转、尺度和平移的不变性,并能够在无标签的情况下提取样本的自然鉴别信息,在人脸识别领域取得了较为成功的应用.本文在典型相关分析(Canonical correlation analysis,CCA)的基础上引入稀疏保持项,提出一种稀疏保持典型相关分析(Sparsity preserving canonical correlation analysis,SPCCA).该方法不仅实现了两组特征集鉴别信息的有效融合,同时对提取特征间的稀疏重构性加以约束,增强了特征的表示和鉴别能力.在多特征手写体字符集与人脸数据集上的实验结果表明,SPCCA比CCA具有更优的识别性能. 展开更多
关键词 典型相关分析(CCA) 稀疏保持投影(spp) 稀疏保持典型相关分析(SPCCA) 特征融合
下载PDF
基于鉴别稀疏保持嵌入的人脸识别算法 被引量:56
20
作者 马小虎 谭延琪 《自动化学报》 EI CSCD 北大核心 2014年第1期73-82,共10页
鉴于近年来稀疏表示(Sparse representation,SR)在高维数据例如人脸图像的特征提取与降维领域的快速发展,对原始的稀疏保持投影(Sparsity preserving projection,SPP)算法进行了改进,提出了一种叫做鉴别稀疏保持嵌入(Discriminant spars... 鉴于近年来稀疏表示(Sparse representation,SR)在高维数据例如人脸图像的特征提取与降维领域的快速发展,对原始的稀疏保持投影(Sparsity preserving projection,SPP)算法进行了改进,提出了一种叫做鉴别稀疏保持嵌入(Discriminant sparsity preserving embedding,DSPE)的算法.通过求解一个最小二乘问题来更新SPP中的稀疏权重并得到一个更能真实反映鉴别信息的鉴别稀疏权重,最后以最优保持这个稀疏权重关系为目标来计算高维数据的低维特征子空间.该算法是一个线性的监督学习算法,通过引入鉴别信息,能够有效地对高维数据进行降维.在ORL库、Yale库、扩展Yale B库和CMU PIE库上的大量实验结果验证了算法的有效性. 展开更多
关键词 人脸识别 稀疏表示 稀疏保持投影 鉴别稀疏保持嵌入
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部