针对频分复用双工方式的大规模多输入多输出(MASSIVE MIMO)系统在虚拟角域信道中估计精度较差的问题,提出一种基于门限的稀疏度自适应匹配追踪(BT-SAMP)算法。该算法融合了回溯正交匹配追踪(BAOMP)算法的原子选择特性和稀疏度自适应匹...针对频分复用双工方式的大规模多输入多输出(MASSIVE MIMO)系统在虚拟角域信道中估计精度较差的问题,提出一种基于门限的稀疏度自适应匹配追踪(BT-SAMP)算法。该算法融合了回溯正交匹配追踪(BAOMP)算法的原子选择特性和稀疏度自适应匹配追踪(SAMP)算法的自适应特性,将BAOMP算法的"添加原子"规则作为SAMP算法的原子选择预处理,通过合理的阈值添加固定的原子,然后延续SAMP算法的步长迭代自适应特性,寻找到信道矩阵近似系数最大,达到了提高SAMP算法估计精度、加快算法收敛的目的。仿真结果表明,在低信噪比(SNR)情况下,与SAMP算法相比,信道估计精度均有提高,特别是信噪比在0~10 d B时,其估计精度提升4 d B,算法的运行时间减少约61%。展开更多
文摘针对频分复用双工方式的大规模多输入多输出(MASSIVE MIMO)系统在虚拟角域信道中估计精度较差的问题,提出一种基于门限的稀疏度自适应匹配追踪(BT-SAMP)算法。该算法融合了回溯正交匹配追踪(BAOMP)算法的原子选择特性和稀疏度自适应匹配追踪(SAMP)算法的自适应特性,将BAOMP算法的"添加原子"规则作为SAMP算法的原子选择预处理,通过合理的阈值添加固定的原子,然后延续SAMP算法的步长迭代自适应特性,寻找到信道矩阵近似系数最大,达到了提高SAMP算法估计精度、加快算法收敛的目的。仿真结果表明,在低信噪比(SNR)情况下,与SAMP算法相比,信道估计精度均有提高,特别是信噪比在0~10 d B时,其估计精度提升4 d B,算法的运行时间减少约61%。