信道状态信息(Channel State Information,CSI)对于大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)发挥高性能至关重要。但在上下行传输信道不存在互易性的频分双工(Frequency Division Duplex,FDD)制式下,若采用传统的信道...信道状态信息(Channel State Information,CSI)对于大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)发挥高性能至关重要。但在上下行传输信道不存在互易性的频分双工(Frequency Division Duplex,FDD)制式下,若采用传统的信道估计方法会给CSI的获取带来巨大的导频开销和计算量。考虑利用大规模 MIMO 信道的虚角域稀疏性来减少获取CSI所需开销,在此基础上进一步研究了大规模 MIMO 正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中各子载波信道在虚角域的共同稀疏特性和稀疏支撑集的时间相关特性,达到降低信道维度的目的,则大大减少了基站对 CSI 获取所需的资源开销。同时,为了降低信道稀疏支撑集信息获取所需的导频开销和提高信息的时效性,利用压缩感知技术对支撑集进行估计。仿真结果验证了所提方案性能的优越性。展开更多
文摘信道状态信息(Channel State Information,CSI)对于大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)发挥高性能至关重要。但在上下行传输信道不存在互易性的频分双工(Frequency Division Duplex,FDD)制式下,若采用传统的信道估计方法会给CSI的获取带来巨大的导频开销和计算量。考虑利用大规模 MIMO 信道的虚角域稀疏性来减少获取CSI所需开销,在此基础上进一步研究了大规模 MIMO 正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中各子载波信道在虚角域的共同稀疏特性和稀疏支撑集的时间相关特性,达到降低信道维度的目的,则大大减少了基站对 CSI 获取所需的资源开销。同时,为了降低信道稀疏支撑集信息获取所需的导频开销和提高信息的时效性,利用压缩感知技术对支撑集进行估计。仿真结果验证了所提方案性能的优越性。