期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
保留结构特征的稀疏性正则化图像修复 被引量:15
1
作者 邓承志 刘娟娟 +1 位作者 汪胜前 朱华生 《光学精密工程》 EI CAS CSCD 北大核心 2013年第7期1906-1913,共8页
以压缩传感和稀疏表示为理论依据,提出了一种基于剪切波变换的稀疏性正则化的图像修复模型,以便更好地保留图像的结构特征。该模型用剪切波作为图像的稀疏表示,以稀疏性作为正则化项;同时基于变量分裂法,采用增广Lagrange优化方法求解... 以压缩传感和稀疏表示为理论依据,提出了一种基于剪切波变换的稀疏性正则化的图像修复模型,以便更好地保留图像的结构特征。该模型用剪切波作为图像的稀疏表示,以稀疏性作为正则化项;同时基于变量分裂法,采用增广Lagrange优化方法求解最优化问题。另外,通过交替最小化方式来降低计算复杂性。从峰值信噪比(PSNR)、结构相似度(SSIM)、收敛速度和视觉效果等4个方面验证了算法的有效性。结果显示:利用本文算法修复图像的质量明显优于其他算法,获得了更优的PSNR和SSIM值。新的模型无论是在客观还是视觉主观方面都具有更好的性能,同时算法具有更快的收敛速度。得到的结果表明本文算法能够更好地修复图像,获得较好的视觉效果。 展开更多
关键词 图像修复 剪切波变换 稀疏正则 增广LAGRANGE函数
下载PDF
稀疏性正则化非负矩阵分解的在线学习方法 被引量:1
2
作者 薛模根 徐国明 王峰 《模式识别与人工智能》 EI CSCD 北大核心 2013年第3期242-246,共5页
针对非负矩阵分解效率低的不足,提出一种基于在线学习的稀疏性非负矩阵分解的快速方法.通过对目标函数添加正则化项来控制分解后系数矩阵的稀疏性,将问题转化成稀疏表示的字典学习问题,利用在线字典学习算法求解目标函数,并对迭代过程... 针对非负矩阵分解效率低的不足,提出一种基于在线学习的稀疏性非负矩阵分解的快速方法.通过对目标函数添加正则化项来控制分解后系数矩阵的稀疏性,将问题转化成稀疏表示的字典学习问题,利用在线字典学习算法求解目标函数,并对迭代过程的矩阵更新进行转换,采取块坐标下降法进行矩阵更新,提高算法收敛速度.实验结果表明,该方法在有效保持图像特征信息的同时,运行效率得到提高. 展开更多
关键词 稀疏正则 非负矩阵分解 块坐标下降法 在线学习
下载PDF
基于重叠组稀疏超拉普拉斯正则化的高光谱图像恢复
3
作者 冉启刚 《应用数学进展》 2024年第9期4307-4321,共15页
高光谱图像混合噪声去除是遥感领域的一个基本问题,也是一个重要的预处理步骤。本研究针对高光谱图像去噪问题,为有效地对高光谱图像进行恢复,提出了一种基于重叠组稀疏性超拉普拉斯正则化(OGS-HL)的新型去噪方法。该方法可以有效捕捉... 高光谱图像混合噪声去除是遥感领域的一个基本问题,也是一个重要的预处理步骤。本研究针对高光谱图像去噪问题,为有效地对高光谱图像进行恢复,提出了一种基于重叠组稀疏性超拉普拉斯正则化(OGS-HL)的新型去噪方法。该方法可以有效捕捉图像的局部相关性和方向性结构,同时减少传统全变分正则化中的阶梯伪影。通过乘子交替方向法求解非凸优化问题,显著提高了去噪效率。在多个遥感图像数据集上的仿真实验表明,所提方法在峰值信噪比(PSNR)和结构相似度(SSIM)等评价指标上优于现有技术,展现了在复杂噪声环境下的优越去噪性能和广泛的应用潜力。The removal of mixed noise from hyperspectral images is a fundamental issue in the field of remote sensing and an important preprocessing step. This study focuses on the denoising problem of hyperspectral images. To effectively restore hyperspectral images, a new denoising method based on Overlap Group Sparse Hyper Laplacian Regularization (OGS-HL) is proposed. This method can effectively capture the local correlation and directional structure of images, while reducing the step artifacts in traditional total variation regularization. By using the alternating direction method of multipliers to solve non-convex optimization problems, the denoising efficiency has been significantly improved. Simulation experiments on multiple remote sensing image datasets have shown that the proposed method outperforms existing technologies in evaluation metrics such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), demonstrating superior denoising performance and broad application potential in complex noisy environments. 展开更多
关键词 高光谱图像 重叠组稀疏超拉普拉斯正则 非凸优化 L1范数 乘子交替方向法
下载PDF
基于布雷格曼迭代的稀疏正则化图像复原方法 被引量:2
4
作者 陈曦 《科学技术与工程》 北大核心 2014年第9期189-193,共5页
为了实现模糊噪声图像的清晰化复原,提出了一种基于布雷格曼迭代的稀疏正则化约束的图像复原算法。首先,运用差分算子,得到图像中各个方向上的梯度信息;然后,利用提取的梯度信息,得到图像边缘各个方向上的权重;并结合稀疏性原理... 为了实现模糊噪声图像的清晰化复原,提出了一种基于布雷格曼迭代的稀疏正则化约束的图像复原算法。首先,运用差分算子,得到图像中各个方向上的梯度信息;然后,利用提取的梯度信息,得到图像边缘各个方向上的权重;并结合稀疏性原理,针对复原图像,提出了一种权重的稀疏性正则化约束;最后,运用了一种布雷格曼迭代(Bregman Iteration,BI)策略对提出的方法进行最优化求解。实验结果表明,较近几年的一些具有代表性的图像复原方法相比,不仅主观的视觉效果得到了较为明显的改进,而且客观的信噪比增量也增加了0.3~2.5dB。 展开更多
关键词 图像复原 梯度信息 稀疏原理 权重的稀疏正则化约束 布雷格曼迭代
下载PDF
低剂量CT的线性Bregman迭代重建算法 被引量:10
5
作者 王丽艳 韦志辉 《电子与信息学报》 EI CSCD 北大核心 2013年第10期2418-2424,共7页
针对降低X线源管电流来减少辐射剂量的实现方案所引起的投影图像低信噪比的情况,该文提出一种新的低剂量CT图像重建模型。总的优化目标函数采用泊松噪声的负对数似然函数作为数据保真项,采用待重建图像的稀疏性先验信息作为正则项。保... 针对降低X线源管电流来减少辐射剂量的实现方案所引起的投影图像低信噪比的情况,该文提出一种新的低剂量CT图像重建模型。总的优化目标函数采用泊松噪声的负对数似然函数作为数据保真项,采用待重建图像的稀疏性先验信息作为正则项。保真项能够克服加性高斯模型不能有效刻画噪声性质的缺点,正则化项能够改善测量低信噪比所引起的不适定性。求解过程中采用线性化Bregman迭代格式,将原目标函数分解为变系数的2次优化问题和稀疏性先验去噪问题,其中的2次优化问题中的2次项系数采用变系数计算,能够更好地逼近原始的保真项,从而加快收敛速度。在低剂量扇形束成像的条件下,对仿真模型进行了数值试验,并同传统的滤波反投影算法、极大似然算法和加权2范数重建算法进行了比较,验证了该文算法的有效性。 展开更多
关键词 CT重建 低剂量 稀疏正则 线Bregman迭代
下载PDF
改进的基于谱聚类的子空间聚类模型
6
作者 高冉 陈花竹 《计算机应用》 CSCD 北大核心 2021年第12期3645-3651,共7页
子空间聚类的目的是将来自不同子空间的数据分割到其本质上所属的低维子空间。现有的基于数据的自我表示和谱聚类的子空间聚类算法将该问题分为两个连续的阶段:首先从高维数据中学习数据的相似性矩阵,然后通过将谱聚类应用于所学相似性... 子空间聚类的目的是将来自不同子空间的数据分割到其本质上所属的低维子空间。现有的基于数据的自我表示和谱聚类的子空间聚类算法将该问题分为两个连续的阶段:首先从高维数据中学习数据的相似性矩阵,然后通过将谱聚类应用于所学相似性矩阵来推断数据的聚类隶属。通过定义一种新的数据自适应稀疏正则项,并将其与结构稀疏子空间聚类(SSSC)模型和改进的稀疏谱聚类(SSpeC)模型相结合,给出了一个新的统一优化模型。新模型利用数据的相似度和聚类指标的相互引导克服了SSpeC稀疏性惩罚的盲目性,并使得相似度具有了判别性,这有利于将不同子空间的数据分为不同类,弥补了SSSC模型只强制来自相同子空间的数据具有相同标签的缺陷。常用数据集上的实验结果表明,所提模型增强了聚类判别的能力,优于一些经典的两阶段法和SSSC模型。 展开更多
关键词 子空间聚类 相似度矩阵 稀疏正则性 谱聚类 聚类指标矩阵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部