期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于神经认知计算模型的高分辨率遥感图像场景分类 被引量:10
1
作者 刘扬 付征叶 郑逢斌 《系统工程与电子技术》 EI CSCD 北大核心 2015年第11期2623-2633,共11页
通过大脑对外界环境感知的神经结构与认知功能的相关研究,构建仿脑的媒体神经认知计算(multimedia neural cognitive computing,MNCC)模型。该模型模拟了感官的信息感知、新皮层功能柱的认知功能、丘脑的注意控制结构、海马体的记忆存... 通过大脑对外界环境感知的神经结构与认知功能的相关研究,构建仿脑的媒体神经认知计算(multimedia neural cognitive computing,MNCC)模型。该模型模拟了感官的信息感知、新皮层功能柱的认知功能、丘脑的注意控制结构、海马体的记忆存储和边缘系统的情绪控制环路等大脑基本的神经结构和认知功能。在此基础上,构建基于MNCC的高分辨率遥感图像场景分类算法。首先,图像经仿射变换后切分为若干图块,通过深度神经网络提取图块的稀疏激活特征,采用概率主题模型获取图块初始场景类别,并利用图块分类错误信息反馈控制场景显著区特征的提取;其次,根据图块的上下文获取场景语义的时空特征,并在此基础上进行图块分类和场景预分类;最后,用场景预分类误差构造奖惩函数,控制和选择深度神经网络中场景区分度较大的稀疏激活特征,并通过增量式强化集成学习,获得最后的场景分类。在两个标准的高分辨率遥感图像数据集上的实验结果表明,MNCC算法具备较好场景分类结果。 展开更多
关键词 媒体神经认知计算 遥感场景分类 深度神经网络 稀疏激活特征 概率主题模型 增量式强化集成学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部