期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合CNN和Transformer的遥感图像建筑物快速提取 被引量:1
1
作者 张云佐 郭威 武存宇 《光学精密工程》 EI CAS CSCD 北大核心 2023年第11期1700-1709,共10页
遥感图像建筑物高效提取在城市规划、灾害救援、军事侦察等领域发挥着重要作用。基于深度学习的建筑物提取方法虽然具有很高的精准度,但通常是由复杂的卷积运算和极大的网络模型实现的,提取速度低,难以满足现实需求。为此,设计了一种遥... 遥感图像建筑物高效提取在城市规划、灾害救援、军事侦察等领域发挥着重要作用。基于深度学习的建筑物提取方法虽然具有很高的精准度,但通常是由复杂的卷积运算和极大的网络模型实现的,提取速度低,难以满足现实需求。为此,设计了一种遥感图像建筑物快速提取方法。在STTNet模型的特征提取网络中引入多尺度卷积,在同一卷积层内提取多尺度特征,进一步提高模型的特征提取能力。改进空间稀疏特征提取器结构,在带有空间注意力权值的特征图中应用通道注意力,有效学习通道注意力权值,进而解决使用骨干网络输出特征图学习时通道注意力权值浮动的问题。为降低模型参数量,加快模型的运算速度,将STTNet模型由并联结构改为串联结构。INRIA建筑物数据集上的实验表明,本文方法在保证精度和IoU的前提下速度比STTNet提升了18.3%,明显优于主流方法。 展开更多
关键词 遥感图像 建筑物提取 多尺度卷积 稀疏特征提取器
下载PDF
Nonlinear industrial process fault diagnosis with latent label consistency and sparse Gaussian feature learning
2
作者 LI Xian-ling ZHANG Jian-feng +2 位作者 ZHAO Chun-hui DING Jin-liang SUN You-xian 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期3956-3973,共18页
With the increasing complexity of industrial processes, the high-dimensional industrial data exhibit a strong nonlinearity, bringing considerable challenges to the fault diagnosis of industrial processes. To efficient... With the increasing complexity of industrial processes, the high-dimensional industrial data exhibit a strong nonlinearity, bringing considerable challenges to the fault diagnosis of industrial processes. To efficiently extract deep meaningful features that are crucial for fault diagnosis, a sparse Gaussian feature extractor(SGFE) is designed to learn a nonlinear mapping that projects the raw data into the feature space with the fault label dimension. The feature space is described by the one-hot encoding of the fault category label as an orthogonal basis. In this way, the deep sparse Gaussian features related to fault categories can be gradually learned from the raw data by SGFE. In the feature space,the sparse Gaussian(SG) loss function is designed to constrain the distribution of features to multiple sparse multivariate Gaussian distributions. The sparse Gaussian features are linearly separable in the feature space, which is conducive to improving the accuracy of the downstream fault classification task. The feasibility and practical utility of the proposed SGFE are verified by the handwritten digits MNIST benchmark and Tennessee-Eastman(TE) benchmark process,respectively. 展开更多
关键词 nonlinear fault diagnosis multiple multivariate Gaussian distributions sparse Gaussian feature learning Gaussian feature extractor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部