To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is ba...To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is based on the Gabor spatial texture features and nonparametric weighted spectral features, and the sparse representation classification method(Gabor–NWSF and SRC), abbreviated GNWSF–SRC. The proposed(GNWSF–SRC) method first combines the Gabor spatial features and nonparametric weighted spectral features to describe the hyperspectral image, and then applies the sparse representation method. Finally, the classification is obtained by analyzing the reconstruction error. We use the proposed method to process two typical hyperspectral data sets with different percentages of training samples. Theoretical analysis and simulation demonstrate that the proposed method improves the classification accuracy and Kappa coefficient compared with traditional classification methods and achieves better classification performance.展开更多
Recently,sparse component analysis (SCA) has become a hot spot in BSS re-search. Instead of independent component analysis (ICA),SCA can be used to solve underdetermined mixture efficiently. Two-step approach (TSA) is...Recently,sparse component analysis (SCA) has become a hot spot in BSS re-search. Instead of independent component analysis (ICA),SCA can be used to solve underdetermined mixture efficiently. Two-step approach (TSA) is one of the typical methods to solve SCA based BSS problems. It estimates the mixing matrix before the separation of the sources. K-means clustering is often used to estimate the mixing matrix. It relies on the prior knowledge of the source number strongly. However,the estimation of the source number is an obstacle. In this paper,a fuzzy clustering method is proposed to estimate the source number and mixing matrix simultaneously. After that,the sources are recovered by the shortest path method (SPM). Simulations show the availability and robustness of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(No.61275010)the Ph.D.Programs Foundation of Ministry of Education of China(No.20132304110007)+1 种基金the Heilongjiang Natural Science Foundation(No.F201409)the Fundamental Research Funds for the Central Universities(No.HEUCFD1410)
文摘To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is based on the Gabor spatial texture features and nonparametric weighted spectral features, and the sparse representation classification method(Gabor–NWSF and SRC), abbreviated GNWSF–SRC. The proposed(GNWSF–SRC) method first combines the Gabor spatial features and nonparametric weighted spectral features to describe the hyperspectral image, and then applies the sparse representation method. Finally, the classification is obtained by analyzing the reconstruction error. We use the proposed method to process two typical hyperspectral data sets with different percentages of training samples. Theoretical analysis and simulation demonstrate that the proposed method improves the classification accuracy and Kappa coefficient compared with traditional classification methods and achieves better classification performance.
基金Key Program of the National Natural Science Foundation of China (Grant No.U0635001)the National Natural Science Foundation of China (Grant Nos.60674033 and 60774094)
文摘Recently,sparse component analysis (SCA) has become a hot spot in BSS re-search. Instead of independent component analysis (ICA),SCA can be used to solve underdetermined mixture efficiently. Two-step approach (TSA) is one of the typical methods to solve SCA based BSS problems. It estimates the mixing matrix before the separation of the sources. K-means clustering is often used to estimate the mixing matrix. It relies on the prior knowledge of the source number strongly. However,the estimation of the source number is an obstacle. In this paper,a fuzzy clustering method is proposed to estimate the source number and mixing matrix simultaneously. After that,the sources are recovered by the shortest path method (SPM). Simulations show the availability and robustness of the proposed method.