期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
组加权约束的核稀疏表示分类算法 被引量:4
1
作者 郑建炜 杨平 +1 位作者 王万良 白琮 《计算机研究与发展》 EI CSCD 北大核心 2016年第11期2567-2582,共16页
提出了一种称为核加权组稀疏表示分类器(kernel weighted group sparse representation classifier,KWGSC)的新型模式分类算法.通过在核特征空间而非原输入空间引入组稀疏性和保局性,KWGSC能够获得更有效的鉴别性重构系数用于分类表示.... 提出了一种称为核加权组稀疏表示分类器(kernel weighted group sparse representation classifier,KWGSC)的新型模式分类算法.通过在核特征空间而非原输入空间引入组稀疏性和保局性,KWGSC能够获得更有效的鉴别性重构系数用于分类表示.为获得最优重构系数,提出了一种新的迭代更新策略进行模型求解并给出了相应的收敛性证明以及复杂度分析.对比现存表示型分类算法,KWGSC具有的优势包括:1)通过隐含映射变换,巧妙地规避了经典线性表示算法所固有的规范化问题;2)通过联合引入距离加权约束和重构冗余约束,精确地推导出查询样本的目标类别标签;3)引入l2,p正则项调整协作机制中的稀疏性,获得更佳的分类性能.人造数值实验表明:经典线性表示型算法在非范数归一化条件下无法找到正确的重构样本,而KWGSC却未受影响.实际的公共数据库验证了所提分类算法具有鲁棒的鉴别力,其综合性能明显优于现存算法. 展开更多
关键词 稀疏表示技术 保局性 稀疏正则项 技术 范数归一化问题
下载PDF
基于字典学习的核稀疏表示人脸识别方法 被引量:36
2
作者 朱杰 杨万扣 唐振民 《模式识别与人工智能》 EI CSCD 北大核心 2012年第5期859-864,共6页
受Metafaces方法的启发,提出一种基于字典学习方法的核稀疏表示方法并成功应用于人脸识别.首先,采用核技术将稀疏表示方法推广到高维空间得到核稀疏表示方法.其次,借鉴Metaface字典学习方法,进行字典学习得到一组核基向量构成核稀疏表... 受Metafaces方法的启发,提出一种基于字典学习方法的核稀疏表示方法并成功应用于人脸识别.首先,采用核技术将稀疏表示方法推广到高维空间得到核稀疏表示方法.其次,借鉴Metaface字典学习方法,进行字典学习得到一组核基向量构成核稀疏表示字典.最后,利用学习得到的核字典基重构样本,并根据样本与重构样本之间的残差最小原则对人脸图像进行分类.在AR、ORL和Yale人脸数据库上的实验表明该方法的良好识别性能. 展开更多
关键词 Metaface学习 技术 稀疏表示 人脸识别
原文传递
Compression techniques of mechanical vibration signals based on optimal sparse representations
3
作者 Feng Kun Qin Qiang Jiang Zhinong 《High Technology Letters》 EI CAS 2012年第3期256-262,共7页
This paper presents the result of an experimental study on the compression of mechanical vibration signals. The signals are collected from both rotating and reciprocating machineries by the accelerometers and a data a... This paper presents the result of an experimental study on the compression of mechanical vibration signals. The signals are collected from both rotating and reciprocating machineries by the accelerometers and a data acquisition (DAQ) system. Four optimal sparse representation methods for compression have been considered including the method of frames ( MOF), best orthogonal basis ( BOB), matching pursuit (MP) and basis pursuit (BP). Furthermore, several indicators including compression ratio (CR), mean square error (MSE), energy retained (ER) and Kurtosis are taken to evaluate the performance of the above methods. Experimental results show that MP outperforms other three methods. 展开更多
关键词 signal compression mechanical vibration signals sparse representation matchingpursuit (MP) basis pursuit (BP)
下载PDF
Synthetic aperture radar imaging based on attributed scatter model using sparse recovery techniques
4
作者 苏伍各 王宏强 阳召成 《Journal of Central South University》 SCIE EI CAS 2014年第1期223-231,共9页
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia... The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR. 展开更多
关键词 attributed scatter center model sparse representation sparse Bayesian learning fast Bayesian matching pursuit smoothed l0 norm sparse reconstruction by separable approximation fast iterative shrinkage-thresholding algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部