This paper presents the result of an experimental study on the compression of mechanical vibration signals. The signals are collected from both rotating and reciprocating machineries by the accelerometers and a data a...This paper presents the result of an experimental study on the compression of mechanical vibration signals. The signals are collected from both rotating and reciprocating machineries by the accelerometers and a data acquisition (DAQ) system. Four optimal sparse representation methods for compression have been considered including the method of frames ( MOF), best orthogonal basis ( BOB), matching pursuit (MP) and basis pursuit (BP). Furthermore, several indicators including compression ratio (CR), mean square error (MSE), energy retained (ER) and Kurtosis are taken to evaluate the performance of the above methods. Experimental results show that MP outperforms other three methods.展开更多
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia...The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR.展开更多
基金Supported by the National Natural Science Foundation of China (No. 50635010).
文摘This paper presents the result of an experimental study on the compression of mechanical vibration signals. The signals are collected from both rotating and reciprocating machineries by the accelerometers and a data acquisition (DAQ) system. Four optimal sparse representation methods for compression have been considered including the method of frames ( MOF), best orthogonal basis ( BOB), matching pursuit (MP) and basis pursuit (BP). Furthermore, several indicators including compression ratio (CR), mean square error (MSE), energy retained (ER) and Kurtosis are taken to evaluate the performance of the above methods. Experimental results show that MP outperforms other three methods.
基金Project(61171133)supported by the National Natural Science Foundation of ChinaProject(11JJ1010)supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProject(61101182)supported by National Natural Science Foundation for Young Scientists of China
文摘The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR.