提出一种新的稀疏谱聚类算法——基于PAM算法的HSSPAM聚类(high-dimensional sparse spectral clustering based on partitioning around medoids).该算法先用高相关系数过滤及主成分分析降维方法以有效减小甚至消除维度灾难对高维数据...提出一种新的稀疏谱聚类算法——基于PAM算法的HSSPAM聚类(high-dimensional sparse spectral clustering based on partitioning around medoids).该算法先用高相关系数过滤及主成分分析降维方法以有效减小甚至消除维度灾难对高维数据处理的影响,再采用Minkowski距离指数变换函数及稀疏化算法来构建分块对角矩阵以重新解释样本之间的相似度;然后构造新颖的拉普拉斯矩阵以实现进一步压缩数据矩阵,进而结合partitioning around medoids(PAM)算法取代传统谱聚类中的K-means算法对特征向量聚类以提高算法的聚类稳定性;最后引入高维基因数据设计了实验,并以不同的聚类评价指标来衡量该研究算法的聚类质量,实验结果表明,新算法能够更精确、更稳定地对基因数据聚类.展开更多
To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is ba...To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is based on the Gabor spatial texture features and nonparametric weighted spectral features, and the sparse representation classification method(Gabor–NWSF and SRC), abbreviated GNWSF–SRC. The proposed(GNWSF–SRC) method first combines the Gabor spatial features and nonparametric weighted spectral features to describe the hyperspectral image, and then applies the sparse representation method. Finally, the classification is obtained by analyzing the reconstruction error. We use the proposed method to process two typical hyperspectral data sets with different percentages of training samples. Theoretical analysis and simulation demonstrate that the proposed method improves the classification accuracy and Kappa coefficient compared with traditional classification methods and achieves better classification performance.展开更多
Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is propose...Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is proposed. First, a non-negative tensor factorization(NTF) algorithm is improved by imposing sparseness constraints on it. Secondly, the bispectral images of mechanical signals are obtained and stacked to form a third-order tensor. Thirdly, the improved algorithm is used to extract features, which are represented by a series of basis images from this tensor. Finally, coefficients indicating these basis images' weights in constituting original bispectral images are calculated for fault classification. Experiments on fault diagnosis of gearboxes show that the extracted features can not only reveal some nonlinear characteristics of the system, but also have intuitive meanings with regard to fault characteristic frequencies. These features provide great convenience for the interpretation of the relationships between machinery faults and corresponding bispectra.展开更多
由于微种群教与学优化算法的种群规模较小,故其种群多样性很难维持.为提高微种群教与学优化算法的搜索性能,提出了一种基于多源基因学习的微种群教与学优化算法(micro-population teaching-learning-based optimization based on multi-...由于微种群教与学优化算法的种群规模较小,故其种群多样性很难维持.为提高微种群教与学优化算法的搜索性能,提出了一种基于多源基因学习的微种群教与学优化算法(micro-population teaching-learning-based optimization based on multi-source gene learning,MTLBO-MGL).在MTLBO-MGL算法中,将教阶段和学阶段根据随机选择策略来对个体进行基因水平上的进化操作;并从基因层面上对种群多样性进行检测和使用稀疏谱聚类方法对种群的每个维度进行聚类.然后,根据多样性检测和聚类结果,选择不同的进化策略来提高所提算法的搜索性能.在28个测试函数上,通过将所提算法与其他4种微种群进化算法作对比,证明了所提算法的整体性能要显著好于所对比的4种算法.本文还将所提算法应用于无人机三维路径规划问题,结果表明MTLBO-MGL算法能够在该问题上取得较好结果.展开更多
文摘提出一种新的稀疏谱聚类算法——基于PAM算法的HSSPAM聚类(high-dimensional sparse spectral clustering based on partitioning around medoids).该算法先用高相关系数过滤及主成分分析降维方法以有效减小甚至消除维度灾难对高维数据处理的影响,再采用Minkowski距离指数变换函数及稀疏化算法来构建分块对角矩阵以重新解释样本之间的相似度;然后构造新颖的拉普拉斯矩阵以实现进一步压缩数据矩阵,进而结合partitioning around medoids(PAM)算法取代传统谱聚类中的K-means算法对特征向量聚类以提高算法的聚类稳定性;最后引入高维基因数据设计了实验,并以不同的聚类评价指标来衡量该研究算法的聚类质量,实验结果表明,新算法能够更精确、更稳定地对基因数据聚类.
基金supported by the National Natural Science Foundation of China(No.61275010)the Ph.D.Programs Foundation of Ministry of Education of China(No.20132304110007)+1 种基金the Heilongjiang Natural Science Foundation(No.F201409)the Fundamental Research Funds for the Central Universities(No.HEUCFD1410)
文摘To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is based on the Gabor spatial texture features and nonparametric weighted spectral features, and the sparse representation classification method(Gabor–NWSF and SRC), abbreviated GNWSF–SRC. The proposed(GNWSF–SRC) method first combines the Gabor spatial features and nonparametric weighted spectral features to describe the hyperspectral image, and then applies the sparse representation method. Finally, the classification is obtained by analyzing the reconstruction error. We use the proposed method to process two typical hyperspectral data sets with different percentages of training samples. Theoretical analysis and simulation demonstrate that the proposed method improves the classification accuracy and Kappa coefficient compared with traditional classification methods and achieves better classification performance.
基金The National Natural Science Foundation of China (No.50875048)the Natural Science Foundation of Jiangsu Province (No.BK2007115)the National High Technology Research and Development Program of China (863 Program)(No.2007AA04Z421)
文摘Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is proposed. First, a non-negative tensor factorization(NTF) algorithm is improved by imposing sparseness constraints on it. Secondly, the bispectral images of mechanical signals are obtained and stacked to form a third-order tensor. Thirdly, the improved algorithm is used to extract features, which are represented by a series of basis images from this tensor. Finally, coefficients indicating these basis images' weights in constituting original bispectral images are calculated for fault classification. Experiments on fault diagnosis of gearboxes show that the extracted features can not only reveal some nonlinear characteristics of the system, but also have intuitive meanings with regard to fault characteristic frequencies. These features provide great convenience for the interpretation of the relationships between machinery faults and corresponding bispectra.
文摘由于微种群教与学优化算法的种群规模较小,故其种群多样性很难维持.为提高微种群教与学优化算法的搜索性能,提出了一种基于多源基因学习的微种群教与学优化算法(micro-population teaching-learning-based optimization based on multi-source gene learning,MTLBO-MGL).在MTLBO-MGL算法中,将教阶段和学阶段根据随机选择策略来对个体进行基因水平上的进化操作;并从基因层面上对种群多样性进行检测和使用稀疏谱聚类方法对种群的每个维度进行聚类.然后,根据多样性检测和聚类结果,选择不同的进化策略来提高所提算法的搜索性能.在28个测试函数上,通过将所提算法与其他4种微种群进化算法作对比,证明了所提算法的整体性能要显著好于所对比的4种算法.本文还将所提算法应用于无人机三维路径规划问题,结果表明MTLBO-MGL算法能够在该问题上取得较好结果.