掺铋光纤放大器有助于将光纤通信系统拓展至新的传输波段。然而,其增益和噪声性能存在相互制约的关系,提升增益往往会导致噪声性能的恶化,反之亦然。因此,提出一种结合反向传播神经网络(BPNN)和带精英保留策略的快速非支配排序遗传算法(...掺铋光纤放大器有助于将光纤通信系统拓展至新的传输波段。然而,其增益和噪声性能存在相互制约的关系,提升增益往往会导致噪声性能的恶化,反之亦然。因此,提出一种结合反向传播神经网络(BPNN)和带精英保留策略的快速非支配排序遗传算法(NSGA-Ⅱ)的多目标优化方法,通过对两级掺铋光纤放大器结构进行设计,实现了增益和噪声性能的同时优化。使用经过训练的BPNN对增益和噪声系数预测的均方根误差分别为0.191和0.084,具有较高预测精度。以高增益和低噪声系数为目标,使用NSGA-Ⅱ算法进行优化,得到包含500个解的Pareto最优解集。优化后,放大器所能实现的平均增益范围为15~37 d B,相应的平均噪声系数范围为4.95~5.31 d B。利用BPNN代替求解耦合微分方程来评价个体适应度,使得优化时间较传统方法由106s左右降低为80 s左右,大幅提升了优化效率。所提方法也为其他掺杂光纤放大器的高效率、多目标结构优化设计提供了一种新的思路。展开更多
文摘掺铋光纤放大器有助于将光纤通信系统拓展至新的传输波段。然而,其增益和噪声性能存在相互制约的关系,提升增益往往会导致噪声性能的恶化,反之亦然。因此,提出一种结合反向传播神经网络(BPNN)和带精英保留策略的快速非支配排序遗传算法(NSGA-Ⅱ)的多目标优化方法,通过对两级掺铋光纤放大器结构进行设计,实现了增益和噪声性能的同时优化。使用经过训练的BPNN对增益和噪声系数预测的均方根误差分别为0.191和0.084,具有较高预测精度。以高增益和低噪声系数为目标,使用NSGA-Ⅱ算法进行优化,得到包含500个解的Pareto最优解集。优化后,放大器所能实现的平均增益范围为15~37 d B,相应的平均噪声系数范围为4.95~5.31 d B。利用BPNN代替求解耦合微分方程来评价个体适应度,使得优化时间较传统方法由106s左右降低为80 s左右,大幅提升了优化效率。所提方法也为其他掺杂光纤放大器的高效率、多目标结构优化设计提供了一种新的思路。
文摘在考虑工人技能学习差异的基础上,为解决多工人协作柔性车间调度问题,提出了基于稀疏邻域带精英策略的快速非支配排序遗传算法(Non-dominated Sorting Genetic AlgorithmⅡ,NSGA-Ⅱ)的调度方法。对考虑技能学习差异的多工人协作柔性车间调度问题进行了描述,以车间工人学习能力为背景改进了DeJong学习模型,并建立了多工人协作柔性车间调度的多目标优化模型。在NSGA-Ⅱ基础上,引入了邻域稀疏度的选择方法,有效保留了信息丰富和多样化的染色体,并将稀疏邻域NSGA-Ⅱ应用于柔性车间调度问题求解。经实验验证,稀疏邻域NSGA-Ⅱ所得Pareto解集质量高于标准NSGA-Ⅱ和自适应多目标进化算法(Multiobjective Evolutionary Algorithm Based on Decomposition,MOEA/D),最短调度方案的完工时间为127.1 min,该方案满足逻辑和时间等约束。实验结果验证了稀疏邻域NSGA-Ⅱ在柔性车间调度中的优越性。