当载机存在偏航角速度时,载机航线会偏离理想航线,对稀疏阵列下视3维合成孔径雷达(DLSLA 3D SAR)成像产生影响。该文建立了载机在飞行过程中存在偏航角速度下的DLSLA 3D SAR成像模型,通过理论推导得到了信号的多普勒调频率表达式,多普...当载机存在偏航角速度时,载机航线会偏离理想航线,对稀疏阵列下视3维合成孔径雷达(DLSLA 3D SAR)成像产生影响。该文建立了载机在飞行过程中存在偏航角速度下的DLSLA 3D SAR成像模型,通过理论推导得到了信号的多普勒调频率表达式,多普勒调频率与目标被调制后的跨航向坐标有关,而与被调制后的方位向坐标无关。进一步,完成跨航向信号处理之后,在平台的速度和偏航角速度不准的情况下,利用参数化稀疏表征方法实现了平台的速度和偏航角速度的估计,并完成了方位向稀疏场景的重构,最后提出了一种形变校正方法。仿真实验验证了该算法的有效性。展开更多
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia...The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR.展开更多
Based on the measurement model of inverse synthetic aperture radar (ISAR) within a small aspect sector,an imaging method was presented with the application of sparse signal processing.This method can form higher resol...Based on the measurement model of inverse synthetic aperture radar (ISAR) within a small aspect sector,an imaging method was presented with the application of sparse signal processing.This method can form higher resolution inverse synthetic aperture radar images from compensating incomplete measured data,and improves the clarity of the images and makes the feature structure much more clear,which is helpful for target recognition.The simulation results indicate that this method can provide clear ISAR images with high contrast under complex motion case.展开更多
In a GPS illuminator based passive radar system,estimation of direction of arriving(DOA) of multiple targets is a difficult problem due to strong interference.A two-stage method combining extensive cancellation algori...In a GPS illuminator based passive radar system,estimation of direction of arriving(DOA) of multiple targets is a difficult problem due to strong interference.A two-stage method combining extensive cancellation algorithm(ECA) and sparse representation is proposed.In the first stage,ECA algorithm is used to eliminate the direct-path and multi-path interference.In the second stage,sparse representation of improved weight constraints based on L1 norm is adopted to estimate DOA and suppress the interference.Simulation results show that the proposed method can effectively estimate DOA in low computation complexity without estimating the disturbance parameter.展开更多
Sparse signal processing is a signal processing technique that takes advantage of signal’s sparsity,allowing signal to be recovered with a reduced number of samples.Compressive sensing,a new branch of the sparse sign...Sparse signal processing is a signal processing technique that takes advantage of signal’s sparsity,allowing signal to be recovered with a reduced number of samples.Compressive sensing,a new branch of the sparse signal processing,has become a rapidly growing research field.Sparse microwave imaging introduces the sparse signal processing theory to radar imaging to obtain new theories,new systems and new methodologies of microwave imaging.This paper first summarizes the latest application of sparse microwave imaging,including Synthetic Aperture Radar(SAR),tomographic SAR and inverse SAR.As sparse signal processing keeps evolving,an avalanche of results have been obtained.We also highlight its recent theoretical advances,including structured sparsity,off-grid,Bayesian approaches,and point out new research directions in sparse microwave imaging.展开更多
文摘当载机存在偏航角速度时,载机航线会偏离理想航线,对稀疏阵列下视3维合成孔径雷达(DLSLA 3D SAR)成像产生影响。该文建立了载机在飞行过程中存在偏航角速度下的DLSLA 3D SAR成像模型,通过理论推导得到了信号的多普勒调频率表达式,多普勒调频率与目标被调制后的跨航向坐标有关,而与被调制后的方位向坐标无关。进一步,完成跨航向信号处理之后,在平台的速度和偏航角速度不准的情况下,利用参数化稀疏表征方法实现了平台的速度和偏航角速度的估计,并完成了方位向稀疏场景的重构,最后提出了一种形变校正方法。仿真实验验证了该算法的有效性。
基金Project(61171133)supported by the National Natural Science Foundation of ChinaProject(11JJ1010)supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProject(61101182)supported by National Natural Science Foundation for Young Scientists of China
文摘The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR.
基金Project supported by the National Natural Science Foundation of China
文摘Based on the measurement model of inverse synthetic aperture radar (ISAR) within a small aspect sector,an imaging method was presented with the application of sparse signal processing.This method can form higher resolution inverse synthetic aperture radar images from compensating incomplete measured data,and improves the clarity of the images and makes the feature structure much more clear,which is helpful for target recognition.The simulation results indicate that this method can provide clear ISAR images with high contrast under complex motion case.
基金Supported by the National Natural Science Foundation of China(No.31270737)Specialized Research Fund for the Doctoral Program of Higher Education(No.20110062110002)the Fundamental Research Funds for the Central Universities(No.2572014EB03,DL13BB16)
文摘In a GPS illuminator based passive radar system,estimation of direction of arriving(DOA) of multiple targets is a difficult problem due to strong interference.A two-stage method combining extensive cancellation algorithm(ECA) and sparse representation is proposed.In the first stage,ECA algorithm is used to eliminate the direct-path and multi-path interference.In the second stage,sparse representation of improved weight constraints based on L1 norm is adopted to estimate DOA and suppress the interference.Simulation results show that the proposed method can effectively estimate DOA in low computation complexity without estimating the disturbance parameter.
基金supported by the National Basic Research Program of China("973" Project)(Grant No.2010CB731900)
文摘Sparse signal processing is a signal processing technique that takes advantage of signal’s sparsity,allowing signal to be recovered with a reduced number of samples.Compressive sensing,a new branch of the sparse signal processing,has become a rapidly growing research field.Sparse microwave imaging introduces the sparse signal processing theory to radar imaging to obtain new theories,new systems and new methodologies of microwave imaging.This paper first summarizes the latest application of sparse microwave imaging,including Synthetic Aperture Radar(SAR),tomographic SAR and inverse SAR.As sparse signal processing keeps evolving,an avalanche of results have been obtained.We also highlight its recent theoretical advances,including structured sparsity,off-grid,Bayesian approaches,and point out new research directions in sparse microwave imaging.