Based on the measurement model of inverse synthetic aperture radar (ISAR) within a small aspect sector,an imaging method was presented with the application of sparse signal processing.This method can form higher resol...Based on the measurement model of inverse synthetic aperture radar (ISAR) within a small aspect sector,an imaging method was presented with the application of sparse signal processing.This method can form higher resolution inverse synthetic aperture radar images from compensating incomplete measured data,and improves the clarity of the images and makes the feature structure much more clear,which is helpful for target recognition.The simulation results indicate that this method can provide clear ISAR images with high contrast under complex motion case.展开更多
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia...The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR.展开更多
Sparse signal processing is a signal processing technique that takes advantage of signal’s sparsity,allowing signal to be recovered with a reduced number of samples.Compressive sensing,a new branch of the sparse sign...Sparse signal processing is a signal processing technique that takes advantage of signal’s sparsity,allowing signal to be recovered with a reduced number of samples.Compressive sensing,a new branch of the sparse signal processing,has become a rapidly growing research field.Sparse microwave imaging introduces the sparse signal processing theory to radar imaging to obtain new theories,new systems and new methodologies of microwave imaging.This paper first summarizes the latest application of sparse microwave imaging,including Synthetic Aperture Radar(SAR),tomographic SAR and inverse SAR.As sparse signal processing keeps evolving,an avalanche of results have been obtained.We also highlight its recent theoretical advances,including structured sparsity,off-grid,Bayesian approaches,and point out new research directions in sparse microwave imaging.展开更多
基金Project supported by the National Natural Science Foundation of China
文摘Based on the measurement model of inverse synthetic aperture radar (ISAR) within a small aspect sector,an imaging method was presented with the application of sparse signal processing.This method can form higher resolution inverse synthetic aperture radar images from compensating incomplete measured data,and improves the clarity of the images and makes the feature structure much more clear,which is helpful for target recognition.The simulation results indicate that this method can provide clear ISAR images with high contrast under complex motion case.
基金Project(61171133)supported by the National Natural Science Foundation of ChinaProject(11JJ1010)supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProject(61101182)supported by National Natural Science Foundation for Young Scientists of China
文摘The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR.
基金supported by the National Basic Research Program of China("973" Project)(Grant No.2010CB731900)
文摘Sparse signal processing is a signal processing technique that takes advantage of signal’s sparsity,allowing signal to be recovered with a reduced number of samples.Compressive sensing,a new branch of the sparse signal processing,has become a rapidly growing research field.Sparse microwave imaging introduces the sparse signal processing theory to radar imaging to obtain new theories,new systems and new methodologies of microwave imaging.This paper first summarizes the latest application of sparse microwave imaging,including Synthetic Aperture Radar(SAR),tomographic SAR and inverse SAR.As sparse signal processing keeps evolving,an avalanche of results have been obtained.We also highlight its recent theoretical advances,including structured sparsity,off-grid,Bayesian approaches,and point out new research directions in sparse microwave imaging.