期刊文献+
共找到165篇文章
< 1 2 9 >
每页显示 20 50 100
稀疏约束的L21增量式非负矩阵分解研究
1
作者 杨亮东 赵妍杰 潘正红 《科技资讯》 2024年第12期240-244,共5页
针对新增数据增大而引起的运算效率增大的现象,提出了一种稀疏约束的增量式非负矩阵分解改进算法。该算法是在加入稀疏条件的情况下对增量数据使用L21范数。首先对初始数据进行经典非负矩阵分解,其次再利用其分解结果参与增量数据的运算... 针对新增数据增大而引起的运算效率增大的现象,提出了一种稀疏约束的增量式非负矩阵分解改进算法。该算法是在加入稀疏条件的情况下对增量数据使用L21范数。首先对初始数据进行经典非负矩阵分解,其次再利用其分解结果参与增量数据的运算,使目标函数在分解计算中具有较好的收敛效果和分解后数据有较好的稀疏度。实验部分主要是将该算法与增量式非负矩阵分解、稀疏约束的增量式非负矩阵分解、经典非负矩阵分解算法进行对比,得出在分解后数据的稀疏度和收敛快慢方面该算法均优于其他3个算法。 展开更多
关键词 矩阵分解 增量式学习 图像识别 稀疏约束 L21范数
下载PDF
基于约束图正则的块稀疏对称非负矩阵分解 被引量:2
2
作者 刘威 邓秀勤 +1 位作者 刘冬冬 刘玉兰 《计算机科学》 CSCD 北大核心 2023年第7期89-97,共9页
现有的基于对称非负矩阵因式分解(Symmetric Nonnegative matrix Factorization, SymNMF)算法大都仅依赖初始数据构造亲和矩阵,并且一定程度上忽视了样本有限的成对约束信息,无法有效区分不同类别的相似样本以及学习样本的几何特征。针... 现有的基于对称非负矩阵因式分解(Symmetric Nonnegative matrix Factorization, SymNMF)算法大都仅依赖初始数据构造亲和矩阵,并且一定程度上忽视了样本有限的成对约束信息,无法有效区分不同类别的相似样本以及学习样本的几何特征。针对以上问题,提出了基于约束图正则的块稀疏对称非负矩阵分解(Block Sparse Symmetric Nonnegative Matrix Factorization Based on Constrained Graph Regularization, CGBS-SymNMF)。首先,通过先验信息构造约束图矩阵,用于指导类别指示矩阵区分高相似度的不同类别样本;然后,引入PCP-SDP(Pairwise Constraint Propagation by Semi-definite Programming)方法,利用成对约束学习一个新的样本图映射矩阵;最后,利用“勿连”约束构造不相似矩阵,用于引导一个块稀疏正则项,以增强模型抗噪能力。实验结果表明,所提算法具有更高的聚类精确度和稳定性。 展开更多
关键词 对称矩阵因式分解 亲和矩阵 成对约束 图正则 稀疏
下载PDF
全变差稀疏约束深度非负矩阵分解高光谱遥感影像解混方法 被引量:1
3
作者 赵文君 翟晗 张洪艳 《电子科技》 2023年第2期53-60,共8页
传统非负矩阵分解方法仅基于单层线性模型,现有的深度非负矩阵分解模型忽略了地物光谱的实际混合物理过程,仅从数学理论考虑深度分解。对此,文中从光谱混合的物理过程出发,综合非负矩阵分解和深度学习,将光谱混合过程进行反向建模,并充... 传统非负矩阵分解方法仅基于单层线性模型,现有的深度非负矩阵分解模型忽略了地物光谱的实际混合物理过程,仅从数学理论考虑深度分解。对此,文中从光谱混合的物理过程出发,综合非负矩阵分解和深度学习,将光谱混合过程进行反向建模,并充分考虑丰度的稀疏性和空间平滑性,构建了用于高光谱遥感影像解混的面向端元矩阵的全变差稀疏约束深度非负矩阵分解模型。通过模拟实验和真实实验,将文中所提方法与5种解混方法进行对比。结果表明,相较于面向丰度的深度非负矩阵分解算法,文中所提方法的平均光谱角距离和均方根误差均有所降低,取得了最佳解混结果。 展开更多
关键词 高光谱遥感 高光谱影像解混 线性光谱解混 矩阵分解 深度学习 深度矩阵分解 稀疏约束 全变差约束
下载PDF
基于非负Tucker 3分解的稀疏分量分析在故障信号提取中的应用 被引量:1
4
作者 王海军 许飞云 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第4期758-762,共5页
针对初始故障信号不稀疏难于判断的问题,在非负Tucker 3分解(NTD)的基础上,提出了一种基于NTD的稀疏分量分析(SCA)处理二次特征信号的方法.同时,为了克服NTD算法收敛慢、易陷入过拟合等局限性,对分解因子增加了非负约束,并提出了对分解... 针对初始故障信号不稀疏难于判断的问题,在非负Tucker 3分解(NTD)的基础上,提出了一种基于NTD的稀疏分量分析(SCA)处理二次特征信号的方法.同时,为了克服NTD算法收敛慢、易陷入过拟合等局限性,对分解因子增加了非负约束,并提出了对分解因子一次更新的算法.对比传统的最小交替二乘法,该更新算法能一次性地计算所有分解因子,避免了计算大规模的Jacobian矩阵,从而较大地提高了算法的效率.实验结果表明:NTD和SCA相结合的方法(SCA_NTD)只需迭代约150步可达到收敛,而且在频谱稀疏性处理方面优于NTF等传统的方法;在分解相同维数张量的条件下,SCA_NTD的最高精度达到了97.16%.因此,SCA_NTD不仅能够改善信号特征的稀疏性,而且对提高算法的收敛速度和精度也具有重要的意义. 展开更多
关键词 tucker 3分解 稀疏分量分析 更新算法 交替最小二乘法
下载PDF
稀疏低秩核非负张量分解高光谱图像解混
5
作者 张志鹏 谭文群 +1 位作者 彭天亮 刘雪松 《南昌工程学院学报》 CAS 2023年第3期95-101,共7页
为了解决传统非负张量分解过程中出现大维度矩阵导致计算速度变慢的问题,本文提出了一种基于稀疏低秩约束的核非负张量分解算法。该算法将张量数据映射到核空间内,添加稀疏约束结构,通过交替方向乘子法进行模型求解,并且考虑张量数据的... 为了解决传统非负张量分解过程中出现大维度矩阵导致计算速度变慢的问题,本文提出了一种基于稀疏低秩约束的核非负张量分解算法。该算法将张量数据映射到核空间内,添加稀疏约束结构,通过交替方向乘子法进行模型求解,并且考虑张量数据的非零元素及其位置,降低了算法计算的复杂度。在模拟和真实数据集上的实验验证了该算法的稳定性和有效性。 展开更多
关键词 稀疏 低秩 核函数 张量分解 高光谱图像
下载PDF
基于非负矩阵分解的稀疏网络社区发现算法
6
作者 金红 胡智群 《电子学报》 EI CAS CSCD 北大核心 2023年第10期2950-2959,共10页
社区结构是复杂网络的重要特征之一,社区发现对研究网络结构有重要的应用价值.基于非负矩阵分解(Non-negative Matrix Factorization,NMF)的社区发现方法是解决社区发现问题的一类基本方法,然而,大多数不能很好地扩展以适用于大型网络,... 社区结构是复杂网络的重要特征之一,社区发现对研究网络结构有重要的应用价值.基于非负矩阵分解(Non-negative Matrix Factorization,NMF)的社区发现方法是解决社区发现问题的一类基本方法,然而,大多数不能很好地扩展以适用于大型网络,并且在稀疏网络上往往会失败.由于表达复杂网络拓扑结构特征的邻接矩阵在数据矩阵稀疏时,特征向量的局部化导致基于NMF的方法往往无法工作.本文提出一种基于NMF的稀疏网络社区发现算法,尝试提高使用非负矩阵分解方法进行社区发现的准确性以及普适性.本文提出从局部特征向量学习正则化矩阵用来表达原始网络拓扑结构特征,得到的特征矩阵能够很好地发掘数据矩阵隐含的全局结构有更强的特征表达能力.与邻接矩阵相比,正则化数据矩阵克服了由于稀疏或噪声引起的特征向量(或奇异向量)的局部化问题.在人工网络和现实网络中的实验结果显示:与经典的基于NMF的社区发现算法相比,该算法能够发现更准确的社区结构,同时,在稀疏网络上也有较好的表现. 展开更多
关键词 稀疏网络 社区发现 拓扑结构特征 矩阵分解 正则化矩阵
下载PDF
基于稀疏约束非负矩阵分解的水下线谱增强方法
7
作者 贾红剑 徐天杨 《黑龙江大学自然科学学报》 2023年第5期613-620,共8页
水下目标线谱增强是被动声纳目标探测的关键问题之一。传统的线谱信号处理方法集中于时域和频域处理,本文提出了利用非负矩阵分解,在时频联合域内进行线谱信号增强的处理方法,以目标线谱信号的时频矩阵作为非负矩阵分解的输入,通过基矩... 水下目标线谱增强是被动声纳目标探测的关键问题之一。传统的线谱信号处理方法集中于时域和频域处理,本文提出了利用非负矩阵分解,在时频联合域内进行线谱信号增强的处理方法,以目标线谱信号的时频矩阵作为非负矩阵分解的输入,通过基矩阵提取线谱信号的频谱模式。根据线谱信号在频域的稀疏性质,对基矩阵进行稀疏性约束,利用权重稀疏扫描的方式讨论基矩阵的稀疏度和频率估计精度随权重系数的变化关系,确定稀疏约束项的有效权重系数区间。仿真结果显示,稀疏约束项在低信噪比条件下表现出优越的线谱增强能力,最低信噪比可达-30 dB。海试数据结果表明,此方法可以有效地提高对线谱信号的提取能力。 展开更多
关键词 水下被动目标探测 线谱增强 矩阵分解 稀疏约束
下载PDF
基于稀疏非负TT分解的图像分类算法
8
作者 况慧娟 陈中明 《杭州电子科技大学学报(自然科学版)》 2023年第1期93-98,共6页
针对高阶的图像分类问题,提出一种基于稀疏非负张量链(Tensor Train,TT)分解的模型。采用交替非负最小二乘法求解相应优化问题,并给出该算法的收敛性分析。数值实验表明,与非负矩阵分解相比,稀疏非负TT分解的图像识别率的平均值提升了6.... 针对高阶的图像分类问题,提出一种基于稀疏非负张量链(Tensor Train,TT)分解的模型。采用交替非负最小二乘法求解相应优化问题,并给出该算法的收敛性分析。数值实验表明,与非负矩阵分解相比,稀疏非负TT分解的图像识别率的平均值提升了6.46%。 展开更多
关键词 Tensor Train分解 交替最小二乘法 张量分解 稀疏
下载PDF
应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择 被引量:16
9
作者 施蓓琦 刘春 +1 位作者 孙伟伟 陈能 《测绘学报》 EI CSCD 北大核心 2013年第3期351-358,366,共9页
针对高光谱影像数据高维性、高度相关性和冗余性等特点,提出应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择。通过稀疏非负矩阵分解方法对高光谱影像进行稀疏化表示,同时顾及其可聚类的特性,在保留所选波段物理意义的基础上,得... 针对高光谱影像数据高维性、高度相关性和冗余性等特点,提出应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择。通过稀疏非负矩阵分解方法对高光谱影像进行稀疏化表示,同时顾及其可聚类的特性,在保留所选波段物理意义的基础上,得到波段选择后的高光谱影像降维数据。通过该方法对PHI-3高光谱影像进行波段选择的试验分析,应用聚类特征有效性分析波段聚类结果,并采用波段子集的信息量、相关性和可分性3类评价指标来验证方法的效果。最终,从运行效率和分类精度两方面证明了基于无监督聚类的稀疏非负矩阵分解对高光谱影像的波段选择的实用性。 展开更多
关键词 高光谱影像 波段选择 稀疏表示 矩阵分解 概率潜语义分析聚类
下载PDF
一种基于部分基矩阵稀疏约束非负矩阵分解的抵抗大强度剪切攻击视频水印构架 被引量:10
10
作者 同鸣 张伟 +1 位作者 张建龙 陈涛 《电子与信息学报》 EI CSCD 北大核心 2012年第8期1819-1826,共8页
该文提出一种部分基矩阵稀疏约束的非负矩阵分解(Non-negative Matrix Factorization with Sparseness Constraints on Parts of the Basis Matrix,NMFSCPBM)方法,其次将水印嵌入在NMFSCPBM分解后的基矩阵大系数中,利用NMFSCPBM提取视... 该文提出一种部分基矩阵稀疏约束的非负矩阵分解(Non-negative Matrix Factorization with Sparseness Constraints on Parts of the Basis Matrix,NMFSCPBM)方法,其次将水印嵌入在NMFSCPBM分解后的基矩阵大系数中,利用NMFSCPBM提取视频运动特征自适应控制水印嵌入强度。最后,在水印检测时,只要残余视频中包含有视频最小剩余子块数,就可以恢复出完整基矩阵,进而提取出完整水印。实验表明,与同类方法相比,该方法抵抗强剪切攻击的能力获得了较大程度提升。 展开更多
关键词 数字水印 剪切攻击 几何攻击 矩阵分解 稀疏约束
下载PDF
基于稀疏性非负矩阵分解的故障监测方法 被引量:12
11
作者 王帆 杨雅伟 +1 位作者 谭帅 侍洪波 《化工学报》 EI CAS CSCD 北大核心 2015年第5期1798-1805,共8页
提出了基于稀疏性非负矩阵分解(SNMF)的故障监测方法。非负矩阵分解(NMF)是一种新的降维方法,可以得到原始数据的低秩近似矩阵。与传统的多元统计过程监控方法如主成分分析(PCA)相比,NMF对潜变量的性质没有假设,除了非负性的要求。将稀... 提出了基于稀疏性非负矩阵分解(SNMF)的故障监测方法。非负矩阵分解(NMF)是一种新的降维方法,可以得到原始数据的低秩近似矩阵。与传统的多元统计过程监控方法如主成分分析(PCA)相比,NMF对潜变量的性质没有假设,除了非负性的要求。将稀疏编码和非负矩阵分解方法结合在一起,因为施加了稀疏性的约束,稀疏性非负矩阵分解方法可以得到对数据更稀疏的表示。在分解时对低秩近似矩阵进行正交化处理,从而在降维时除去变量中的冗余信息,将信息集中到更少的投影方向上。然后,用SNMF方法来提取过程的潜变量,并定义新的监测指标来进行故障监测。使用核密度估计(KDE)方法来计算新定义的监测指标的控制上限。最后,将提出的基于SNMF的监测方法应用于TE过程来评估其监测性能,并与基于传统NMF和PCA的方法进行比较。仿真实验结果表明了所提出新方法的可行性。 展开更多
关键词 故障监测 矩阵分解 主元分析 稀疏编码 统计过程监控
下载PDF
基于稀疏非负矩阵分解和支持向量机的海洋溢油近红外光谱鉴别分析 被引量:9
12
作者 谈爱玲 毕卫红 赵勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第5期1250-1253,共4页
提出一种海洋溢油近红外光谱特征提取与种类鉴别新方法。海面溢油种类鉴别对现场应急处置方案的制定和可疑溢油源的追踪具有重要意义。采用傅里叶变换近红外光谱仪测定汽油、柴油、煤油三类模拟海洋溢油样本的近红外光谱,基于稀疏非负... 提出一种海洋溢油近红外光谱特征提取与种类鉴别新方法。海面溢油种类鉴别对现场应急处置方案的制定和可疑溢油源的追踪具有重要意义。采用傅里叶变换近红外光谱仪测定汽油、柴油、煤油三类模拟海洋溢油样本的近红外光谱,基于稀疏非负矩阵分解算法对光谱进行特征提取,采用五重交叉检验,对210个样本进行训练,建立基于支持向量机的溢油光谱定性分析模型,同时讨论非负特征基数目以及稀疏因子对分类正确率的影响;利用训练好的分类器对90个未知样本进行鉴别,识别正确率达97.78%。所提出的稀疏非负矩阵分解结合支持向量机的近红外光谱定性分析方法,识别正确率高,模型泛化能力强,具有很好的分类效果,为海洋溢油的快速鉴别提供了新途径。 展开更多
关键词 近红外光谱 海洋溢油 稀疏矩阵分解 支持向量机
下载PDF
稀疏非负矩阵分解下的遥感图像融合 被引量:7
13
作者 李红 刘芳 张凯 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第2期193-198,共6页
为了降低多光谱图像与全色图像融合过程中的光谱扭曲和空间失真,提出了一种稀疏非负矩阵分解的融合新方法.首先从全色图像学习出一个高分辨字典和相应的低分辨字典,然后构造多光谱图像的稀疏非负矩阵分解模型,在低分辨字典下获得光谱系... 为了降低多光谱图像与全色图像融合过程中的光谱扭曲和空间失真,提出了一种稀疏非负矩阵分解的融合新方法.首先从全色图像学习出一个高分辨字典和相应的低分辨字典,然后构造多光谱图像的稀疏非负矩阵分解模型,在低分辨字典下获得光谱系数矩阵,最后将该系数矩阵与高分辨字典相乘得到融合后的高分辨多光谱图像.稀疏正则项的引入有效克服了标准非负矩阵分解算法的不稳定现象,能够较好地保持图像的光谱信息和空间信息.将该方法应用于快鸟卫星和地球眼卫星数据,与同类方法的对比分析结果显示:该方法能够减少光谱扭曲和空间信息的损失,得到的融合结果在视觉效果和客观评价指标上均优于对比方法. 展开更多
关键词 遥感图像融合 矩阵分解 稀疏正则
下载PDF
基于反馈稀疏约束的非负张量分解算法 被引量:5
14
作者 刘亚楠 涂铮铮 罗斌 《计算机应用》 CSCD 北大核心 2013年第10期2871-2873,共3页
为了充分利用图像本身的结构信息并充分压缩图像数据,把得到的子空间中数据(反馈)的稀疏性作为约束项加入非负张量分解目标函数中,即采用基于反馈稀疏约束的非负张量分解算法对图像集合进行降维。最后,将该算法应用于手写数字图像库中,... 为了充分利用图像本身的结构信息并充分压缩图像数据,把得到的子空间中数据(反馈)的稀疏性作为约束项加入非负张量分解目标函数中,即采用基于反馈稀疏约束的非负张量分解算法对图像集合进行降维。最后,将该算法应用于手写数字图像库中,实验结果表明所提出的方法能有效改善图像分类的准确性。 展开更多
关键词 矩阵分解 稀疏约束 张量分解
下载PDF
近似稀疏约束的多层非负矩阵分解高光谱解混 被引量:5
15
作者 徐晨光 邓承志 朱华生 《红外与激光工程》 EI CSCD 北大核心 2018年第11期257-265,共9页
稀疏正则化函数的选取直接影响到稀疏非负矩阵分解高光谱解混的效果。目前,主要采用L_0或L_1范数作为稀疏度量。L_0稀疏性好,但求解困难;L_1求解方便,但稀疏性差。提出一种近似稀疏模型,并将其引入到多层非负矩阵分解(AL_0-MLNMF)的高... 稀疏正则化函数的选取直接影响到稀疏非负矩阵分解高光谱解混的效果。目前,主要采用L_0或L_1范数作为稀疏度量。L_0稀疏性好,但求解困难;L_1求解方便,但稀疏性差。提出一种近似稀疏模型,并将其引入到多层非负矩阵分解(AL_0-MLNMF)的高光谱解混中,将观测矩阵进行多层次稀疏分解,提高非负矩阵分解高光谱解混的精度,提升算法的收敛性。仿真数据和真实数据实验表明:该算法能够避免陷入局部极值,提高非负矩阵分解高光谱解混性能,算法精度上比其他几种算法都有较大的提升效果,RMSE降低0.001~1.676 7,SAD降低0.002~0.244 3。 展开更多
关键词 矩阵分解(NMF) 稀疏 混合像元 解混
下载PDF
基于快速层次交替最小二乘非负张量Tucker分解的干涉高光谱图像光谱信息压缩方法 被引量:5
16
作者 杜丽敏 李进 +3 位作者 金光 高慧斌 金龙旭 张柯 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第11期3155-3160,共6页
提出一种基于快速层次交替最小二乘非负张量Tucker分解的高光谱图像光谱信息压缩算法。首先,将干涉高光谱图像光程差方向的三维信息采用三维光程差方向提升小波变换(3DOPT-LDWT)进行分解,将三维小波子带系数看作三阶非负张量,采用快速... 提出一种基于快速层次交替最小二乘非负张量Tucker分解的高光谱图像光谱信息压缩算法。首先,将干涉高光谱图像光程差方向的三维信息采用三维光程差方向提升小波变换(3DOPT-LDWT)进行分解,将三维小波子带系数看作三阶非负张量,采用快速层次交替最小二乘非负张量Tucker分解(FHALS-NTD)算法对进行分解,得到核心张量和模式矩阵。对每个模式矩阵进行量化,对核心张量采用比特平面重要系数编码算法进行编码,得出最终的压缩码流。结果表明,此压缩算法可以稳定可靠地工作。与传统压缩算法比较,平均信噪比提高了1.23dB。有效的提高了干涉高光谱图像压缩性能。 展开更多
关键词 干涉高光谱图像 光差程方向 3维光差程方向提升小波 快速层次交替最小二乘张量tucker分解
下载PDF
基于稀疏性非负矩阵分解和支持向量机的时频图像识别 被引量:16
17
作者 蔡蕾 朱永生 《自动化学报》 EI CSCD 北大核心 2009年第10期1272-1277,共6页
针对机械故障诊断领域对反映设备运行状态的图像识别困难以及选择和提取敏感特征困难的问题,将基于图像的机械设备运行状态判别问题当作图像的识别问题米处理,提出使用稀疏性非负矩阵分解(Sparse non-negative matrixfactorization,SNMF... 针对机械故障诊断领域对反映设备运行状态的图像识别困难以及选择和提取敏感特征困难的问题,将基于图像的机械设备运行状态判别问题当作图像的识别问题米处理,提出使用稀疏性非负矩阵分解(Sparse non-negative matrixfactorization,SNMF)和支持向量机(Support vector machine,SVM)对时频图像进行识别进而判断机器运行状态,从而避免特征的选择和提取.稀疏性非负矩阵分解在对时频图像进行大规模压缩的同时,能够很好地保留图像的隐含特征,从而大大减少自动识别时频图像的计算复杂度,并有效地提高支持向量机的识别精度.此外,奉文还对影响识别率的稀疏性非负矩阵分解的各参数进行了讨论.实验结果表明,该方法对时频处理方法依赖性低,在大多数情况下都能获得较传统方法高的识别率. 展开更多
关键词 时频图像 稀疏矩阵分解 支持向量机 模式识别
下载PDF
基于图正则化和稀疏约束的半监督非负矩阵分解 被引量:5
18
作者 姜小燕 孙福明 李豪杰 《计算机科学》 CSCD 北大核心 2016年第7期77-82,105,共7页
非负矩阵分解是在矩阵非负约束下的分解算法。为了提高识别率,提出了一种基于稀疏约束和图正则化的半监督非负矩阵分解方法。该方法对样本数据进行低维非负分解时,既保持数据的几何结构,又利用已知样本的标签信息进行半监督学习,而且对... 非负矩阵分解是在矩阵非负约束下的分解算法。为了提高识别率,提出了一种基于稀疏约束和图正则化的半监督非负矩阵分解方法。该方法对样本数据进行低维非负分解时,既保持数据的几何结构,又利用已知样本的标签信息进行半监督学习,而且对基矩阵施加稀疏性约束,最后将它们整合于单个目标函数中。构造了一个有效的更新算法,并且在理论上证明了该算法的收敛性。在多个人脸数据库上的仿真结果表明,相对于NMF、GNMF、CNMF等算法,GCNMFS具有更好的聚类精度和稀疏性。 展开更多
关键词 矩阵分解 图正则 稀疏约束 半监督
下载PDF
稀疏约束下非负矩阵分解的增量学习算法 被引量:8
19
作者 王万良 蔡竞 《计算机科学》 CSCD 北大核心 2014年第8期241-244,共4页
非负矩阵分解(NMF)是一种有效的子空间降维方法。为了改善非负矩阵分解运算规模随训练样本增多而不断增大的现象,同时提高分解后数据的稀疏性,提出了一种稀疏约束下非负矩阵分解的增量学习算法,该算法在稀疏约束的条件下利用前一次分解... 非负矩阵分解(NMF)是一种有效的子空间降维方法。为了改善非负矩阵分解运算规模随训练样本增多而不断增大的现象,同时提高分解后数据的稀疏性,提出了一种稀疏约束下非负矩阵分解的增量学习算法,该算法在稀疏约束的条件下利用前一次分解的结果参与迭代运算,在节省大量运算时间的同时提高了分解后数据的稀疏性。在ORL和CBCL人脸数据库上的实验表明了该算法降维的有效性。 展开更多
关键词 子空间降维 稀疏约束 矩阵分解 增量学习
下载PDF
稀疏约束图正则非负矩阵分解的增量学习算法 被引量:3
20
作者 汪金涛 曹玉东 孙福明 《计算机应用》 CSCD 北大核心 2017年第4期1071-1074,共4页
针对非负矩阵分解后数据的稀疏性降低、训练样本增多导致运算规模不断增大的现象,提出了一种稀疏约束图正则非负矩阵分解的增量学习算法。该方法不仅考虑数据的几何信息,而且对系数矩阵进行稀疏约束,并将它们与增量学习相结合。算法在... 针对非负矩阵分解后数据的稀疏性降低、训练样本增多导致运算规模不断增大的现象,提出了一种稀疏约束图正则非负矩阵分解的增量学习算法。该方法不仅考虑数据的几何信息,而且对系数矩阵进行稀疏约束,并将它们与增量学习相结合。算法在稀疏约束和图正则化的条件下利用上一步的分解结果参与迭代运算,在节省大量运算时间的同时提高了分解后数据的稀疏性。在ORL和PIE人脸数据库上的实验结果表明了该算法的有效性。 展开更多
关键词 矩阵分解 稀疏约束 图正则 几何结构 增量学习
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部