期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
稀疏线性预测字典在语音压缩感知中的应用 被引量:1
1
作者 游寒旭 李为 +1 位作者 李昕 朱杰 《上海师范大学学报(自然科学版)》 2016年第2期223-229,共7页
压缩感知理论框架可以同时实现信号的采样和压缩,将压缩感知应用于语音信号处理是近年来的研究热点之一.本文根据语音信号的特点,采用K-SVD算法获得稀疏线性预测字典,作为语音信号的稀疏变换矩阵.高斯随机矩阵用于原语音信号的采样从而... 压缩感知理论框架可以同时实现信号的采样和压缩,将压缩感知应用于语音信号处理是近年来的研究热点之一.本文根据语音信号的特点,采用K-SVD算法获得稀疏线性预测字典,作为语音信号的稀疏变换矩阵.高斯随机矩阵用于原语音信号的采样从而实现信号的压缩,最后通过正交匹配追踪算法(OMP)和采样压缩匹配追踪算法(Co Sa MP)将已采样压缩的语音信号进行信号重构.实验考察了待处理语音信号帧的长度、压缩比,稀疏变换字典以及压缩感知重构算法等因素对语音压缩感知重构性能的影响,结果表明,基于数据集训练的稀疏线性预测字典相比传统解析构造的离散余弦变换字典,对语音的重构性能具有0.6 d B左右的提升. 展开更多
关键词 压缩感知 语音信号处理 K-SVD 稀疏线性预测字典
下载PDF
基于预测稀疏编码的快速单幅图像超分辨率重建 被引量:2
2
作者 沈辉 袁晓彤 刘青山 《计算机应用》 CSCD 北大核心 2015年第6期1749-1752,共4页
针对经典的基于稀疏编码的图像超分辨率算法在重建过程中运算量大、计算效率低的缺点,提出一种基于预测稀疏编码的单幅图像超分辨率重建算法。训练阶段,该算法在传统的稀疏编码误差函数基础上叠加编码预测误差项构造目标函数,并采用交... 针对经典的基于稀疏编码的图像超分辨率算法在重建过程中运算量大、计算效率低的缺点,提出一种基于预测稀疏编码的单幅图像超分辨率重建算法。训练阶段,该算法在传统的稀疏编码误差函数基础上叠加编码预测误差项构造目标函数,并采用交替优化过程最小化该目标函数;测试阶段,仅需将输入的低分辨图像块和预先训练得到的低分辨率字典相乘就能预测出重建系数,从而避免了求解稀疏回归问题。实验结果表明,与经典的基于稀疏编码的单幅图像超分辨率算法相比,该算法能够在显著减少重建阶段运算时间的同时几乎完全保留超分辨率视觉效果。 展开更多
关键词 图像超分辨率 预测稀疏编码 字典学习 交替优化
下载PDF
推荐系统中稀疏情景预测的特征-类别交互因子分解机 被引量:3
3
作者 黄若然 崔莉 韩传奇 《计算机研究与发展》 EI CSCD 北大核心 2022年第7期1553-1568,共16页
随着Web信息的不断增长与发展,对用户稀疏行为的预测已成为目前推荐系统的研究热点.近年来,因子分解机(factorization machine, FM)的提出在一定程度上缓解了稀疏场景下预测精度不准确的问题.它的主要思想是通过2阶特征交互来获取特征... 随着Web信息的不断增长与发展,对用户稀疏行为的预测已成为目前推荐系统的研究热点.近年来,因子分解机(factorization machine, FM)的提出在一定程度上缓解了稀疏场景下预测精度不准确的问题.它的主要思想是通过2阶特征交互来获取特征间丰富的语义关系.随后,感知交互因子分解机(interaction-aware factorization machines, IFM)在FM的特征交互基础上引入类别交互的概念来扩展潜在的交互特性,通过把特征和类别分别进行交互后再融合来得到更准确的预测结果.在IFM的基础上,提出了一种特征-类别交互因子分解机(FIFM)模型.FIFM不仅保留了特征交互和类别交互机制,还设计了一种新的特征-类别交互机制(FIM)来进一步挖掘交互信息中的有效信息,并利用融合交互感知来预测不同稀疏场景下的用户行为模式.此外,还基于深度学习提出了一种实现FIFM的神经网络模型GFIM.相比于FIFM,GFIM的参数量和时间复杂度更高,但同时也能捕获更多高阶的非线性特征交互信息,能适合算力较高的应用场景.在4个真实数据集上的实验结果表明,FIFM和GFIM在RMSE指标上超越了当前最好的方法IFM.实验工作探究了多类稀疏场景下的预测结果,记录了时间和空间复杂度的消耗情况,并进行了分析讨论. 展开更多
关键词 因子分解机 特征-类别交互 注意力网络 深度神经网络 稀疏情景预测
下载PDF
基于RSAMP算法的OFDM稀疏信道估计 被引量:4
4
作者 季策 王金芝 李伯群 《系统工程与电子技术》 EI CSCD 北大核心 2021年第8期2290-2296,共7页
为了提高稀疏度自适应贪婪迭代(sparsity adaptive greedy iterative,SAGI)算法的重构性能,缩短重构时间,提出了一种基于有限等距性质(restricted isometry property,RIP)的稀疏度预测自适应匹配追踪(RIP based prediction-sparsity ada... 为了提高稀疏度自适应贪婪迭代(sparsity adaptive greedy iterative,SAGI)算法的重构性能,缩短重构时间,提出了一种基于有限等距性质(restricted isometry property,RIP)的稀疏度预测自适应匹配追踪(RIP based prediction-sparsity adaptive matching pursuit,RSAMP)算法,并成功将其应用于正交频分复用(orthogonal frequency division multiplexing,OFDM)系统信道估计。首先,提出一种基于RIP的稀疏度预测方法,可以在稀疏度未知的情况下快速精确地逼近真实稀疏度,大大缩短了算法的运行时间。其次,利用主成分分析法对观测矩阵采取了优化处理,提高了算法的重构性能。仿真实验显示,相较于SAMP、SAGI算法,本文提出的RSAMP算法可以获取更好的估计性能和更短的运行时间。 展开更多
关键词 正交频分复用系统 信道估计 有限等距性质准则 稀疏预测 观测矩阵 重构算法
下载PDF
基于双动态头Sparse R-CNN的表面缺陷检测算法 被引量:3
5
作者 郑亚睿 蒋三新 《仪表技术与传感器》 CSCD 北大核心 2023年第5期97-105,111,共10页
为了减少缺陷检测中的冗余检测,提出基于双动态头Sparse R-CNN的缺陷检测算法,2个动态头的责任不同:第1个负责不同尺度和空间的特征提取,第2个负责匹配可学习的提议特征。为了更好地提取图像细节信息,改进特征金字塔(FPN)为特征金字塔网... 为了减少缺陷检测中的冗余检测,提出基于双动态头Sparse R-CNN的缺陷检测算法,2个动态头的责任不同:第1个负责不同尺度和空间的特征提取,第2个负责匹配可学习的提议特征。为了更好地提取图像细节信息,改进特征金字塔(FPN)为特征金字塔网格(FPG),并且与第1个动态头相结合进行特征提取。其次,提出了交流注意力来改进检测阶段的多头自注意力模块,减少随着迭代注意力图相似导致建模能力下降的问题。最后,改进边框回归损失函数GIoU为Alpha-CIoU,加速收敛并提升检测的精度。实验结果表明:算法在晶圆和热轧钢2种表面缺陷数据集上都取得很好效果,平均精度分别为94.3%和88.1%。 展开更多
关键词 表面缺陷检测 动态头 稀疏预测 注意力机制 标签匹配 端到端预测
下载PDF
Discrete-time Markov-based dynamic control approach for compressed sampling 被引量:1
6
作者 安春燕 纪红 +1 位作者 李屹 张晓亮 《Journal of Southeast University(English Edition)》 EI CAS 2012年第3期287-291,共5页
To solve the problem that the signal sparsity level is time-varying and not known as a priori in most cases,a signal sparsity level prediction and optimal sampling rate determination scheme is proposed.The discrete-ti... To solve the problem that the signal sparsity level is time-varying and not known as a priori in most cases,a signal sparsity level prediction and optimal sampling rate determination scheme is proposed.The discrete-time Markov chain is used to model the signal sparsity level and analyze the transition between different states.According to the current state,the signal sparsity level state in the next sampling period and its probability are predicted.Furthermore,based on the prediction results,a dynamic control approach is proposed to find out the optimal sampling rate with the aim of maximizing the expected reward which considers both the energy consumption and the recovery accuracy.The proposed approach can balance the tradeoff between the energy consumption and the recovery accuracy.Simulation results show that the proposed dynamic control approach can significantly improve the sampling performance compared with the existing approach. 展开更多
关键词 compressed sampling signal sparsity level prediction discrete-time Markov chain
下载PDF
Short-term photovoltaic power prediction using combined K-SVD-OMP and KELM method 被引量:2
7
作者 LI Jun ZHENG Danyang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期320-328,共9页
For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the i... For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the input data of the model.Next,the dictionary learning techniques using the K-mean singular value decomposition(K-SVD)algorithm and the orthogonal matching pursuit(OMP)algorithm are used to obtain the corresponding sparse encoding based on all the input data,i.e.the initial dictionary.Then,to build the global prediction model,the sparse coding vectors are used as the input of the model of the kernel extreme learning machine(KELM).Finally,to verify the effectiveness of the combined K-SVD-OMP and KELM method,the proposed method is applied to a instance of the photovoltaic power prediction.Compared with KELM,SVM and ELM under the same conditions,experimental results show that different combined sparse representation methods achieve better prediction results,among which the combined K-SVD-OMP and KELM method shows better prediction results and modeling accuracy. 展开更多
关键词 photovoltaic power prediction sparse representation K-mean singular value decomposition algorithm(K-SVD) kernel extreme learning machine(KELM)
下载PDF
Application of constrained sparse spike inversion in reservoir predication:a case study of Oriente Basin in South America
8
作者 WANG Qing LU Zhanguo 《Global Geology》 2011年第2期87-93,共7页
In the conditions of low Signal-to-Noise Ratio(SNR) of seismic data and a small quality of log information,the consequences of seismic interpretation through the impedance inversion of seismic data could be more preci... In the conditions of low Signal-to-Noise Ratio(SNR) of seismic data and a small quality of log information,the consequences of seismic interpretation through the impedance inversion of seismic data could be more precise. Constrained sparse spike inversion(CSSI) has advantage in oil and gas reservoir predication because it does not rely on the original model. By analyzing the specific algorithm of CSSI,the accuracy of inversion is controlled. Oriente Basin in South America has the low amplitude in geological structure and complex lithologic trap. The well predication is obtained by the application of CSSI. 展开更多
关键词 CSSI reservoir predication control parameters lower frequency model impedance inversion
下载PDF
Using Spatial Data Mining to Predict the Solvability Space of Preconditioned Sparse Linear Systems
9
作者 Shuting Xu SangBaeKim Jun Zhang 《Computer Technology and Application》 2016年第3期139-148,共10页
The solution of large sparse linear systems is one of the most important problems in large scale scientific computing. Among the many methods developed, the preconditioned Krylov subspace methods [1] are considered th... The solution of large sparse linear systems is one of the most important problems in large scale scientific computing. Among the many methods developed, the preconditioned Krylov subspace methods [1] are considered the preferred methods. Selecting an effective preconditioner with appropriate parameters for a specific sparse linear system presents a challenging task for many application scientists and engineers who have little knowledge of preconditioned iterative methods. The purpose of this paper is to predict the parameter solvability space of the preconditioners with two or more parameters. The parameter solvability space is usually irregular, however, in many situations it shows spatial locality, i.e. the parameter locations that are closer in parameter space are more likely to have similar solvability. We propose three spatial data mining methods to predict the solvability of ILUT which make usage of spatial locality in different ways. The three methods are MSC (multi-points SVM classifier), OSC (overall SVM classifier), and OSAC (overall spatial autoregressive classifier). The experimental results show that both MSC and OSAC can obtain 90% accuracy in prediction, but OSAC is much simpler to implement. We focus our work on ILUT preconditioner [2], but the proposed strategies should be applicable to other preconditioners with two or more parameters. 展开更多
关键词 PRECONDITIONER PREDICTION SOLVABILITY SVM spatial autoregressive model.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部