Magnesium sulfate was proposed to be leaching agent to deal with the ion-adsorption type rare earths ore to reduce or even eliminate ammonia?nitrogen emissions. The effects of temperature, particle size and stirring s...Magnesium sulfate was proposed to be leaching agent to deal with the ion-adsorption type rare earths ore to reduce or even eliminate ammonia?nitrogen emissions. The effects of temperature, particle size and stirring speed on rare earth leaching process and the leaching behaviors of the single rare earth element were investigated in order to reveal the rare earth leaching characteristics. Besides, the comparison of leaching effects between magnesium sulfate and ammonium sulfate was also studied. The results showed that the rare earth leaching process could be well described with inner diffusion control model and the apparent activation energy was 9.48 kJ/mol. The leaching behaviors of the single rare earth element were brought into correspondence with rare earths. Moreover, when the concentration of leaching agent was 0.20 mol/L, the rare earth leaching efficiency could all reach above 95% and the leaching efficiency of aluminum impurities could be restrained by 10% using magnesium sulfate compared with ammonium sulfate.展开更多
This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitroge...This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.展开更多
基金Project(2015BAB16B01)supported by the National Science and Technology Support Program of China
文摘Magnesium sulfate was proposed to be leaching agent to deal with the ion-adsorption type rare earths ore to reduce or even eliminate ammonia?nitrogen emissions. The effects of temperature, particle size and stirring speed on rare earth leaching process and the leaching behaviors of the single rare earth element were investigated in order to reveal the rare earth leaching characteristics. Besides, the comparison of leaching effects between magnesium sulfate and ammonium sulfate was also studied. The results showed that the rare earth leaching process could be well described with inner diffusion control model and the apparent activation energy was 9.48 kJ/mol. The leaching behaviors of the single rare earth element were brought into correspondence with rare earths. Moreover, when the concentration of leaching agent was 0.20 mol/L, the rare earth leaching efficiency could all reach above 95% and the leaching efficiency of aluminum impurities could be restrained by 10% using magnesium sulfate compared with ammonium sulfate.
基金Supported by National Natural Science Foundation of China(Grant No.21067003,5136-4015)Natural Science Foundation of Jiangxi Province(Grant No.20114BAB203024)National High-Tech Research and Development Program of China(Grant No.2012BAC11B07)~~
文摘This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.