Magnetic separation of iron in rare-earth tailings was achieved by magnetizing roast process with coal as reductant. Effects of the temperature, carbon to oxygen ratio, and cooling type on magnetic susceptibility and ...Magnetic separation of iron in rare-earth tailings was achieved by magnetizing roast process with coal as reductant. Effects of the temperature, carbon to oxygen ratio, and cooling type on magnetic susceptibility and composition of rare-earth tailings were investigated. The results show that roast conditions with the temperature of 650℃, carbon to oxygen ratio of 3.85, and holding time of 2.5 h are in favor of reduction of Fe_2O_3 to Fe_3O_4 when the roasted rare-earth tailings is cooled along with furnace. Under these roast conditions, magnetic susceptibility of rare-earth tailings is 2.36 that is very close to theoretical value(2.33). However, magnetic separation results of iron in rare-earth tailings cooled along with furnace are not satisfactory. Through comparing magnetic separation results of iron in rare-earth tailings cooled by different ways, it is found that water cooling is more favored of magnetic separation of iron in the roasted rare-earth tailings than furnace cooling and air cooling. Grade and recovery of iron in concentrate from rare-earth tailings cooled by water are 45.00%-49.00% and 65.00%-77.50%, respectively.展开更多
基金Project(2012CBA01205)supported by National Basic Research Program of ChinaProjects(50934004,51274061)supported by the National Natural Science Foundation of ChinaProject(N110502002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Magnetic separation of iron in rare-earth tailings was achieved by magnetizing roast process with coal as reductant. Effects of the temperature, carbon to oxygen ratio, and cooling type on magnetic susceptibility and composition of rare-earth tailings were investigated. The results show that roast conditions with the temperature of 650℃, carbon to oxygen ratio of 3.85, and holding time of 2.5 h are in favor of reduction of Fe_2O_3 to Fe_3O_4 when the roasted rare-earth tailings is cooled along with furnace. Under these roast conditions, magnetic susceptibility of rare-earth tailings is 2.36 that is very close to theoretical value(2.33). However, magnetic separation results of iron in rare-earth tailings cooled along with furnace are not satisfactory. Through comparing magnetic separation results of iron in rare-earth tailings cooled by different ways, it is found that water cooling is more favored of magnetic separation of iron in the roasted rare-earth tailings than furnace cooling and air cooling. Grade and recovery of iron in concentrate from rare-earth tailings cooled by water are 45.00%-49.00% and 65.00%-77.50%, respectively.