This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N2) in an industrial furnace under several cases of conventional combustion (air with 21% O2 at 300 and 1273 K) and th...This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N2) in an industrial furnace under several cases of conventional combustion (air with 21% O2 at 300 and 1273 K) and the highly preheated and diluted air (1273 K with 10% O2 and 90% N2) combustion (HPDAC) conditions using an in-house computer program. It was found that by applying a combined diluted fuel and oxidant instead of their uncombined and/or undiluted states, the best condition is obtained for the establishment of HPDAC's main unique features. These features are low mean and maximum gas temperature and high radiation/total heat transfer to gas and tubes; as well as more uniformity of theirs distributions which results in decrease in NOx pollutant formation and increase in furnace efficiency or energy saving. Moreover, a variety of chemical flame shape, the process fluid and tubes walls temperatures profiles, the required regenerator efficiency and finally the concentration and velocity patterns have been also qualitatively/quantitatively studied.展开更多
The final goal of fusion energy research is to make it economically competitive and the cost of electricity (COE) as low as acceptable by the energy market. Therefore the fusion plasma has to be operating with high po...The final goal of fusion energy research is to make it economically competitive and the cost of electricity (COE) as low as acceptable by the energy market. Therefore the fusion plasma has to be operating with high power density and the plasma facing components (PFC), such as first wall and divertor, have to sustain high surface heat load and bombardment with high particle flux. Such rigorous environments consequentially lead to severe damage and erosion of PFC materials. As a result, the lifetime of PFC would be shortened.展开更多
基金Supported by the National Iranian Oil Company (NIOC)
文摘This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N2) in an industrial furnace under several cases of conventional combustion (air with 21% O2 at 300 and 1273 K) and the highly preheated and diluted air (1273 K with 10% O2 and 90% N2) combustion (HPDAC) conditions using an in-house computer program. It was found that by applying a combined diluted fuel and oxidant instead of their uncombined and/or undiluted states, the best condition is obtained for the establishment of HPDAC's main unique features. These features are low mean and maximum gas temperature and high radiation/total heat transfer to gas and tubes; as well as more uniformity of theirs distributions which results in decrease in NOx pollutant formation and increase in furnace efficiency or energy saving. Moreover, a variety of chemical flame shape, the process fluid and tubes walls temperatures profiles, the required regenerator efficiency and finally the concentration and velocity patterns have been also qualitatively/quantitatively studied.
文摘The final goal of fusion energy research is to make it economically competitive and the cost of electricity (COE) as low as acceptable by the energy market. Therefore the fusion plasma has to be operating with high power density and the plasma facing components (PFC), such as first wall and divertor, have to sustain high surface heat load and bombardment with high particle flux. Such rigorous environments consequentially lead to severe damage and erosion of PFC materials. As a result, the lifetime of PFC would be shortened.