The paper describes the application of a static var compensator to improve the electrical system of the ACN (Cravo Norte Association) oil field in Colombia. The paper summarizes the application, including system asp...The paper describes the application of a static var compensator to improve the electrical system of the ACN (Cravo Norte Association) oil field in Colombia. The paper summarizes the application, including system aspects that require special control functions in the SVC (static var compensator) regulator. Several important benefits for the system operation are demonstrated, such as increased power transmission import over an existing 230 kV network, dynamic bus voltage stabilization for various load conditions, including system outages and load rejection, and reduction of variable speed drive shutdowns by up to 95%. Some relevant design features of the SVC are treated, as well.展开更多
Today's automation industry is driven by the need for an increased productivity, higher flexibility, and higher individuality, and characterized by tailor-made and more complex control solutions. In the processing in...Today's automation industry is driven by the need for an increased productivity, higher flexibility, and higher individuality, and characterized by tailor-made and more complex control solutions. In the processing industry, logic controller design is often a manual, experience-based, and thus an error-prone procedure. Typically, the specifications are given by a set of informal requirements and a technical flowchart and both are used to be directly translated into the control code. This paper proposes a method in which the control program is constructed as a sequential function chart (SFC) by transforming the requirements via clearly defined intermediate formats. For the purpose of analysis, the resulting SFC can be translated algorithmically into timed automata. A rigorous verification can be used to determine whether all specifications are satisfied if a formal model of the plant is available which is then composed with the automata model of the logic controller (LC).展开更多
文摘The paper describes the application of a static var compensator to improve the electrical system of the ACN (Cravo Norte Association) oil field in Colombia. The paper summarizes the application, including system aspects that require special control functions in the SVC (static var compensator) regulator. Several important benefits for the system operation are demonstrated, such as increased power transmission import over an existing 230 kV network, dynamic bus voltage stabilization for various load conditions, including system outages and load rejection, and reduction of variable speed drive shutdowns by up to 95%. Some relevant design features of the SVC are treated, as well.
基金the European Union through the Network of Excellence Hybrid Control (HYCON) under contract IST-511368.
文摘Today's automation industry is driven by the need for an increased productivity, higher flexibility, and higher individuality, and characterized by tailor-made and more complex control solutions. In the processing industry, logic controller design is often a manual, experience-based, and thus an error-prone procedure. Typically, the specifications are given by a set of informal requirements and a technical flowchart and both are used to be directly translated into the control code. This paper proposes a method in which the control program is constructed as a sequential function chart (SFC) by transforming the requirements via clearly defined intermediate formats. For the purpose of analysis, the resulting SFC can be translated algorithmically into timed automata. A rigorous verification can be used to determine whether all specifications are satisfied if a formal model of the plant is available which is then composed with the automata model of the logic controller (LC).