People's attitudes towards public events or products may change overtime,rather than staying on the same state.Understanding how sentiments change overtime is an interesting and important problem with many applica...People's attitudes towards public events or products may change overtime,rather than staying on the same state.Understanding how sentiments change overtime is an interesting and important problem with many applications.Given a certain public event or product,a user's sentiments expressed in microblog stream can be regarded as a vector.In this paper,we define a novel problem of sentiment evolution analysis,and develop a simple yet effective method to detect sentiment evolution in user-level for public events.We firstly propose a multidimensional sentiment model with hierarchical structure to model user's complicate sentiments.Based on this model,we use FP-growth tree algorithm to mine frequent sentiment patterns and perform sentiment evolution analysis by Kullback-Leibler divergence.Moreover,we develop an improve Affinity Propagation algorithm to detect why people change their sentiments.Experimental evaluations on real data sets show that sentiment evolution could be implemented effectively using our method proposed in this article.展开更多
The past decade has witnessed a huge increase in the number of proposed middleware solutions for robotic fleets operating in unstructured environments. As a result, it has become difficult to decide which middleware i...The past decade has witnessed a huge increase in the number of proposed middleware solutions for robotic fleets operating in unstructured environments. As a result, it has become difficult to decide which middleware is the most appropriate for a specific application or application domain. In this paper we first extract a set of common and specific challenges that middlewares address, and group them according to the source domain they have originated within. These challenges are derived from a specific precision agriculture use-case based on the robotic fleet for weed control elaborated within the European project RHEA-robot fleets for highly effective agriculture and forestry management. Furthermore, the paper provides an analysis of a number of different middlewares and suggests a set of criteria for systemizing representative solutions. The aim of this analysis is to assist the process of finding an adequate middleware for a specific application domain.展开更多
Polyoxometalates(POMs) are a class of molecular metal oxides, showing numerous applications in various chemical processes due to their unique acid/base and redox features. By adjusting the tunable molecular structures...Polyoxometalates(POMs) are a class of molecular metal oxides, showing numerous applications in various chemical processes due to their unique acid/base and redox features. By adjusting the tunable molecular structures of the anions and counter cations, plenty of POM-based ionic liquids(POM-based ILs) have been fabricated to be used in various fields, such as catalysis, structural chemistry and material science. As a class of excellent catalysts, POM-based ILs have shown advantages in the emerging field of CO_2 utilization such as CO_2 capture, cycloaddition of CO_2 to epoxides, and reduction of CO_2, owing to the efficient activation of CO_2 by POM anions. This review summarizes recent advances in the catalysis of POM-based ILs, and particularly highlights the areas that are related to CO_2 conversion.展开更多
Hypervalent iodine(Ⅲ)reagents have been vastly used in many useful organic transformations.In this review article,we highlight the strategies that used the common hypervalent iodine(Ⅲ)reagents as oxidants to synthes...Hypervalent iodine(Ⅲ)reagents have been vastly used in many useful organic transformations.In this review article,we highlight the strategies that used the common hypervalent iodine(Ⅲ)reagents as oxidants to synthesize the heterocyclic compounds,based on the patterns of bond formation during the construction of the heterocyclic backbones.展开更多
A light-weight high-entropy alloy (LWHEA) A120Be20Fe10SilsTi35 has been developed to have unique mechanical properties and oxidation resistance. One major and two minor phases are observed in the as-east microstruct...A light-weight high-entropy alloy (LWHEA) A120Be20Fe10SilsTi35 has been developed to have unique mechanical properties and oxidation resistance. One major and two minor phases are observed in the as-east microstructure. The density of the alloy is 3.91 gcm-3, and its hardness is HV 911, which is higher than quartz. The hardness and hardness to density ratio are the highest of all light-weight alloys reported before. In addition, it has excellent oxidation resistance at 700℃ and 900℃, which far exceeds that of Ti-6A1-4V. Thus, the combination of properties is promising for high-temperature applications, which require light weight, wear-resistant and oxidation-resistant components.展开更多
Bacterial infections may lead to diverse acute or chronic diseases (e.g., inflammation, sepsis and cancer). New antibiotics against bacteria are rarely discovered in recent years, which necessitates the exploration ...Bacterial infections may lead to diverse acute or chronic diseases (e.g., inflammation, sepsis and cancer). New antibiotics against bacteria are rarely discovered in recent years, which necessitates the exploration of new antibacterial agents. Engineered nanomatetials {ENMs) have been extensively studied for antibacterial use because of their long lasting killing effects in wide spectra of bacteria. Graphene oxide (GO) is one of the most widely studied ENMs and exhibit strong bactericidal effects. The physicochemical properties of GO play important roles in bacterial killing by triggering a cascade of toxic events. Many studies have explored the signaling pathways of GO in bacteria. Although molecular initiating events (MIEs) of GO in bacteria dominate its killing efficiency as well as toxicity mechanisms, they have been rarely reviewed. In this report, we discussed the structure-activity relationships (SARs) involved in GOinduced bacterial killing and the MIEs including redox reaction with biomolecules, mechanical destruction of membranes and catalysis of extracellular metabolites. Furthermore, we summarized the clinical or commercial applications of GO-based antibacterial products and discussed their biosafety in mammal. Finally, we reviewed the remaining challenges in GO for antibacterial applications, which may offer new insights for the development of nano antibacterial studies.展开更多
Tailoring tire pore structure and surface chemistry of graphene-based laminates is essentially important for their applications as separation membranes. Usually, pure graphene oxide (GO) and completely reduced GO (...Tailoring tire pore structure and surface chemistry of graphene-based laminates is essentially important for their applications as separation membranes. Usually, pure graphene oxide (GO) and completely reduced GO (rGO) membranes suffer florn low water permeance because of the lack of pristine graphitic sp2 domains and very small interlayer spacing, respectively. In this work, we studied the influence of reduction degree on the structure and separation pertornrance of rGO membranes, tt was found that weak reduction retains the good dispersion and hydrophilicity of GO nanosheets. More importantly, it increases the number of pristine graphitic sp2 domains in rGO nanosheets while keeping the large interlayer spacing of the GO membranes in most regions at the same time. The resultant mernbranes show a high water permeance of 56.3 L m^-2 h^ -1 bar^ -1, which is about 4 times and over 10^4 times larger tban those of the GO and completely reduced rGO membranes, respectively, and high rejection over 95700 for various dyes. Furthermore, they show better structure stability and more superior separation perfor- mance than GO membranes in acid and alkali environments.展开更多
基金ACKNOWLEDGEMENTS The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. The research was supported in part by National Basic Research Program of China (973 Program, No. 2013CB329601, No. 2013CB329604), National Natural Science Foundation of China (No.91124002, 61372191, 61472433, 61202362, 11301302), and China Postdoctoral Science Foundation (2013M542560). All opinions, findings, conclusions and recommendations in this paper are those of the authors and do not necessarily reflect the views of the funding agencies.
文摘People's attitudes towards public events or products may change overtime,rather than staying on the same state.Understanding how sentiments change overtime is an interesting and important problem with many applications.Given a certain public event or product,a user's sentiments expressed in microblog stream can be regarded as a vector.In this paper,we define a novel problem of sentiment evolution analysis,and develop a simple yet effective method to detect sentiment evolution in user-level for public events.We firstly propose a multidimensional sentiment model with hierarchical structure to model user's complicate sentiments.Based on this model,we use FP-growth tree algorithm to mine frequent sentiment patterns and perform sentiment evolution analysis by Kullback-Leibler divergence.Moreover,we develop an improve Affinity Propagation algorithm to detect why people change their sentiments.Experimental evaluations on real data sets show that sentiment evolution could be implemented effectively using our method proposed in this article.
文摘The past decade has witnessed a huge increase in the number of proposed middleware solutions for robotic fleets operating in unstructured environments. As a result, it has become difficult to decide which middleware is the most appropriate for a specific application or application domain. In this paper we first extract a set of common and specific challenges that middlewares address, and group them according to the source domain they have originated within. These challenges are derived from a specific precision agriculture use-case based on the robotic fleet for weed control elaborated within the European project RHEA-robot fleets for highly effective agriculture and forestry management. Furthermore, the paper provides an analysis of a number of different middlewares and suggests a set of criteria for systemizing representative solutions. The aim of this analysis is to assist the process of finding an adequate middleware for a specific application domain.
基金supported by the National Natural Science Foundation of China (21472103)the Specialized Research Fund for the Doctoral Program of Higher Education (20130031110013)+1 种基金the Ministry of Education Innovation Team (IRT13022) of Chinathe "111" Project of Ministry of Education of China (B06005)
文摘Polyoxometalates(POMs) are a class of molecular metal oxides, showing numerous applications in various chemical processes due to their unique acid/base and redox features. By adjusting the tunable molecular structures of the anions and counter cations, plenty of POM-based ionic liquids(POM-based ILs) have been fabricated to be used in various fields, such as catalysis, structural chemistry and material science. As a class of excellent catalysts, POM-based ILs have shown advantages in the emerging field of CO_2 utilization such as CO_2 capture, cycloaddition of CO_2 to epoxides, and reduction of CO_2, owing to the efficient activation of CO_2 by POM anions. This review summarizes recent advances in the catalysis of POM-based ILs, and particularly highlights the areas that are related to CO_2 conversion.
基金the National Natural Science Foundation of China(21072148)Foundation(B)for Peiyang Scholar-Young Core Faculty of Tianjin University(2013XR-0144)the Innovation Foundation of Tianjin University(2013XJ-0005)for financial support
文摘Hypervalent iodine(Ⅲ)reagents have been vastly used in many useful organic transformations.In this review article,we highlight the strategies that used the common hypervalent iodine(Ⅲ)reagents as oxidants to synthesize the heterocyclic compounds,based on the patterns of bond formation during the construction of the heterocyclic backbones.
文摘A light-weight high-entropy alloy (LWHEA) A120Be20Fe10SilsTi35 has been developed to have unique mechanical properties and oxidation resistance. One major and two minor phases are observed in the as-east microstructure. The density of the alloy is 3.91 gcm-3, and its hardness is HV 911, which is higher than quartz. The hardness and hardness to density ratio are the highest of all light-weight alloys reported before. In addition, it has excellent oxidation resistance at 700℃ and 900℃, which far exceeds that of Ti-6A1-4V. Thus, the combination of properties is promising for high-temperature applications, which require light weight, wear-resistant and oxidation-resistant components.
基金supported by the National Natural Science Foundation of China (31671032)Key Project of Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (17KJA310003)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)supported by the Recruitment Program of Global Youth Experts of ChinaStrategic Project for Developing Outstanding Institutes in Suzhou (MCMX201604)
文摘Bacterial infections may lead to diverse acute or chronic diseases (e.g., inflammation, sepsis and cancer). New antibiotics against bacteria are rarely discovered in recent years, which necessitates the exploration of new antibacterial agents. Engineered nanomatetials {ENMs) have been extensively studied for antibacterial use because of their long lasting killing effects in wide spectra of bacteria. Graphene oxide (GO) is one of the most widely studied ENMs and exhibit strong bactericidal effects. The physicochemical properties of GO play important roles in bacterial killing by triggering a cascade of toxic events. Many studies have explored the signaling pathways of GO in bacteria. Although molecular initiating events (MIEs) of GO in bacteria dominate its killing efficiency as well as toxicity mechanisms, they have been rarely reviewed. In this report, we discussed the structure-activity relationships (SARs) involved in GOinduced bacterial killing and the MIEs including redox reaction with biomolecules, mechanical destruction of membranes and catalysis of extracellular metabolites. Furthermore, we summarized the clinical or commercial applications of GO-based antibacterial products and discussed their biosafety in mammal. Finally, we reviewed the remaining challenges in GO for antibacterial applications, which may offer new insights for the development of nano antibacterial studies.
基金supported by the National Key Research and Development Program of China(2016YFA0200101)the National Natural Science Foundation of China(51325205,51290273,and51521091)Chinese Academy of Sciences(KGZD-EW-303-1,KGZDEW-T06,174321KYSB20160011,and XDPB06)
文摘Tailoring tire pore structure and surface chemistry of graphene-based laminates is essentially important for their applications as separation membranes. Usually, pure graphene oxide (GO) and completely reduced GO (rGO) membranes suffer florn low water permeance because of the lack of pristine graphitic sp2 domains and very small interlayer spacing, respectively. In this work, we studied the influence of reduction degree on the structure and separation pertornrance of rGO membranes, tt was found that weak reduction retains the good dispersion and hydrophilicity of GO nanosheets. More importantly, it increases the number of pristine graphitic sp2 domains in rGO nanosheets while keeping the large interlayer spacing of the GO membranes in most regions at the same time. The resultant mernbranes show a high water permeance of 56.3 L m^-2 h^ -1 bar^ -1, which is about 4 times and over 10^4 times larger tban those of the GO and completely reduced rGO membranes, respectively, and high rejection over 95700 for various dyes. Furthermore, they show better structure stability and more superior separation perfor- mance than GO membranes in acid and alkali environments.