The steady two-dimensional flow of Powell-Eyring fluid is investigated. The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. The governing nonlinear differential equations are reduced t...The steady two-dimensional flow of Powell-Eyring fluid is investigated. The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. The governing nonlinear differential equations are reduced to the ordinary differential equations by similarity transformations. The analytic solutions are presented in series forms by homotopy analysis method(HAM). Convergence of the obtained series solutions is explicitly discussed. The physical significance of different parameters on the velocity and concentration profiles is discussed through graphical illustrations. It is noticed that the boundary layer thickness increases by increasing the Powell-Eyring fluid material parameter(ε) whereas it decreases by increasing the fluid material parameter(δ). Further, the concentration profile increases when Powell-Eyring fluid material parameters increase. The concentration is also an increasing function of Schmidt number and decreasing function of strength of homogeneous reaction. Also mass transfer rate increases for larger rate of heterogeneous reaction.展开更多
This paper investigates the convergence proof of the Direct Simulation Monte Carlo(DSMC) method and the Gas-Kinetic Unified Algorithm in simulating the Boltzmann equation.It can be shown that the particle velocity dis...This paper investigates the convergence proof of the Direct Simulation Monte Carlo(DSMC) method and the Gas-Kinetic Unified Algorithm in simulating the Boltzmann equation.It can be shown that the particle velocity distribution function obtained by the DSMC method converges to a modified form of the Boltzmann equation,which is the equation of the gas-kinetic unified algorithm to directly solve the molecular velocity distribution function.Their convergence is derived through mathematical treatment.The collision frequency is presented using various molecular models and the local equilibrium distribution function is obtained by Enskog expansion using the converged equation of the DSMC method.These two expressions agree with those used in the unified algorithm.Numerical validation of the converging consistency between these two approaches is illustrated by simulating the pressure driven Poiseuille flow in the slip transition flow regime and the two-dimensional and three-dimensional flows around a circular cylinder and spherical-cone reentry body covering the whole flow regimes from low speed micro-channel flow to high speed non-equilibrium aerothermodynamics.展开更多
A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed fro...A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed from given macroscopic variables. Based on this fact, we propose a technique to reconstruct distribution function at discrete level, and employ it to develop an implicit numerical method for kinetic equations. The new implicit method only stores the macroscopic quantities which appear in the collision term, and does not store the distribution functions. As a result, enormous memory requirement for solving kinetic equations is totally relieved. Several boundary conditions, such as, inlet, outlet and isothermal boundaries, are discussed. Some numerical tests demonstrate the validity and efficiency of the technique.The new implicit solver provides nearly identical solution as the explicit kinetic solver, while the memory requirement is on the same order as the Navier–Stokes solver.展开更多
文摘The steady two-dimensional flow of Powell-Eyring fluid is investigated. The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. The governing nonlinear differential equations are reduced to the ordinary differential equations by similarity transformations. The analytic solutions are presented in series forms by homotopy analysis method(HAM). Convergence of the obtained series solutions is explicitly discussed. The physical significance of different parameters on the velocity and concentration profiles is discussed through graphical illustrations. It is noticed that the boundary layer thickness increases by increasing the Powell-Eyring fluid material parameter(ε) whereas it decreases by increasing the fluid material parameter(δ). Further, the concentration profile increases when Powell-Eyring fluid material parameters increase. The concentration is also an increasing function of Schmidt number and decreasing function of strength of homogeneous reaction. Also mass transfer rate increases for larger rate of heterogeneous reaction.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91016027 and 91130018)
文摘This paper investigates the convergence proof of the Direct Simulation Monte Carlo(DSMC) method and the Gas-Kinetic Unified Algorithm in simulating the Boltzmann equation.It can be shown that the particle velocity distribution function obtained by the DSMC method converges to a modified form of the Boltzmann equation,which is the equation of the gas-kinetic unified algorithm to directly solve the molecular velocity distribution function.Their convergence is derived through mathematical treatment.The collision frequency is presented using various molecular models and the local equilibrium distribution function is obtained by Enskog expansion using the converged equation of the DSMC method.These two expressions agree with those used in the unified algorithm.Numerical validation of the converging consistency between these two approaches is illustrated by simulating the pressure driven Poiseuille flow in the slip transition flow regime and the two-dimensional and three-dimensional flows around a circular cylinder and spherical-cone reentry body covering the whole flow regimes from low speed micro-channel flow to high speed non-equilibrium aerothermodynamics.
基金supported by the National Natural Science Foundation of China(11602091 and 91530319)the National Key Research and Development Plan(2016YFB0600805)
文摘A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed from given macroscopic variables. Based on this fact, we propose a technique to reconstruct distribution function at discrete level, and employ it to develop an implicit numerical method for kinetic equations. The new implicit method only stores the macroscopic quantities which appear in the collision term, and does not store the distribution functions. As a result, enormous memory requirement for solving kinetic equations is totally relieved. Several boundary conditions, such as, inlet, outlet and isothermal boundaries, are discussed. Some numerical tests demonstrate the validity and efficiency of the technique.The new implicit solver provides nearly identical solution as the explicit kinetic solver, while the memory requirement is on the same order as the Navier–Stokes solver.