MapReduce is a popular program- ming model for processing large-scale datasets in a distributed environment and is a funda- mental component of current cloud comput- ing and big data applications. In this paper, a hea...MapReduce is a popular program- ming model for processing large-scale datasets in a distributed environment and is a funda- mental component of current cloud comput- ing and big data applications. In this paper, a heartbeat mechanism for MapReduce Task Scheduler using Dynamic Calibration (HMTS- DC) is proposed to address the unbalanced node computation capacity problem in a het- erogeneous MapReduce environment. HMTS- DC uses two mechanisms to dynamically adapt and balance tasks assigned to each com- pute node: 1) using heartbeat to dynamically estimate the capacity of the compute nodes, and 2) using data locality of replicated data blocks to reduce data transfer between nodes. With the first mechanism, based on the heart- beats received during the early state of the job, the task scheduler can dynamically estimate the computational capacity of each node. Us- ing the second mechanism, unprocessed Tasks local to each compute node are reassigned and reserved to allow nodes with greater capacities to reserve more local tasks than their weaker counterparts. Experimental results show that HMTS-DC performs better than Hadoop and Dynamic Data Placement Strategy (DDP) in a dynamic environment. Furthermore, an en- hanced HMTS-DC (EHMTS-DC) is proposed bv incorporatin historical data. In contrastto the "slow start" property of HMTS-DC, EHMTS-DC relies on the historical computation capacity of the slave machines. The experimental results show that EHMTS-DC outperforms HMTS-DC in a dynamic environment.展开更多
In order to simplify the boundary conditions of pavement temperature field,the "Environment-Surface" system which considered the natural environment and pavement surface was established.Based on this system,...In order to simplify the boundary conditions of pavement temperature field,the "Environment-Surface" system which considered the natural environment and pavement surface was established.Based on this system,the partial differential equations of the one-dimensional heat conduction in the pavement were established on the basis of the heat transfer theory.Furthermore,the function forms of the initial and boundary conditions of the equations were created through the field experiments.The general solution of the pavement one-dimensional heat conduction partial differential equations was acquired by using Green's function,and the explicit expression of pavement temperature field under specific constraint conditions was derived.For the purpose of analysis,the pavement temperatures in different seasons were calculated using the explicit expression of pavement temperature field,and the calculation accuracy was analyzed through the comparison between measured and calculated values.Then,the relationship between fitting accuracy and calculation accuracy of pavement temperatures was analyzed.The analysis results show that: the usage of "Environment-Surface" system simplifies the calculation of pavement temperature field; the relative error between calculated and measured values is generally less than 7% and is seldom influenced by seasons; there is a positive correlation between the calculation accuracy and the fitting accuracy of pavement surface temperature; high fitting accuracy would result in less error of pavement temperature prediction.展开更多
The insertion loss of acoustic radiation of damped cylindrical shell described by 3-D elasticity Navier equations under radial harmonic applied load in fluid is presented. The classical integral transform technique, p...The insertion loss of acoustic radiation of damped cylindrical shell described by 3-D elasticity Navier equations under radial harmonic applied load in fluid is presented. The classical integral transform technique, potential theory and Lamè resolution are used to derive the solutions of Navier equations. The higher precision inversion computation is introduced to solve the linear equations. Comparing with acoustic radiation of one-layer cylindrical shell, the influence of thickness, mass density, dilatational wave loss factor and Young's modulus of damping material and circumferential mode number of the cylindrical shell on the insertion loss is concluded. The theoretical model in the paper can be used to deal with the arbitrary thickness and any frequency of the coated layer in dynamic problem. The conclusions may be of theoretical reference to the application of damping material to noise and vibration control of submarines and underwater pipes.展开更多
Recently, Morabito(2010) has studied the water spray phenomena in planing hulls and presented new analytical equations. However, these equations have not been used for detailed parametric studies of water spray around...Recently, Morabito(2010) has studied the water spray phenomena in planing hulls and presented new analytical equations. However, these equations have not been used for detailed parametric studies of water spray around planing hulls. In this paper, a straight forward analysis is conducted to apply these analytical equations for finding the spray geometry profile by developing a computer program based on presented computational process. The obtained results of the developed computer program are compared against existing data in the literature and favorable accuracy is achieved. Parametric studies have been conducted for different physical parameters. Positions of spray apex are computed and three dimensional profiles of spray are examined. It is concluded that spray height increases by an increase in the speed coefficient or the deadrise angle. Ultimately, a computational process is added to Savitsky's method and variations of spray apex are computed for different velocities. It is shown that vertical, lateral, and longitudinal positions of spray increase as the craft speed increases. On the other hand, two new angles are defined in top view and it is concluded that they have direct relation with the trim angle. However, they show inverse relation with the deadrise angle.展开更多
A non-relativistic microscopic mean field theory of finite nuclei is investigated where the nucleus is described as a collection of nucleons and delta resonances. The ground state properties of 90Zr nucleus have been ...A non-relativistic microscopic mean field theory of finite nuclei is investigated where the nucleus is described as a collection of nucleons and delta resonances. The ground state properties of 90Zr nucleus have been investigated at equilibrium and large amplitude compression using a realistic effective baryon-baryon Hamiltonian based on Reid Soft Core (RSC) potential. The sensitivity of the ground state properties is studied, such as binding energy, nuclear radius, radial density distribution, and single particle energies to the degree of compression. It is found that the most of increasing in the nuclear energy generated under compression is used to create the massive Δ particles. For 90Zr nucleus under compression at 2.5 times density of the normal nuclear density, the excited nucleons to Δ 's are increased sharply up to 14% of the total number of constituents. This result is consistent with the values extracted from relativistic heavy-ion collisions. The single particle energy levels are calculated and their behaviors under compression are examined too. A good agreement between results with effective Hamiltonian and the phenomenologieal shell model for the low lying single-particle spectra is obtained. A considerable reduction in compressibility for the nucleus, and softening of the equation of state with the inclusion of the Δ's in the nuclear dynamics are suggested by the results.展开更多
Based on the microscopic elasticity theory and microscopic diffusion equation, the precipitation progress of the binary alloys including coherent strain energy was studied. The results show that coherent strain has ob...Based on the microscopic elasticity theory and microscopic diffusion equation, the precipitation progress of the binary alloys including coherent strain energy was studied. The results show that coherent strain has obvious effect on the coherent two-phase morphology and precipitation mechanism. With the increase of coherent strain energy, the particles shape changes from the randomly distributed equiaxed particels to elliptical precipitate shapes,their arrangement orientation increases; in the late stage of precipitation, the particle arrangement presents obvious directionality along the [10]and[01]directions, and the precipitation mechanism of alloy changes from typical spinodal decomposition mechanism to the mixture process which possesses the characteristics of both non-classical nucleation growth and spinodal decomposition mechanisms.展开更多
A calculation method of contact problem of plastic gears based on three parameter model of viscoelasticity material is presented. In this calculation method, the influence of temperature upon the property of plastics ...A calculation method of contact problem of plastic gears based on three parameter model of viscoelasticity material is presented. In this calculation method, the influence of temperature upon the property of plastics is considered and an iteration process of temperature-elasticity module-friction coefficient is proposed. From the rolling contact problem of two viscoelastic cylinders with parallel axis, a set of normal-tangential contact coupled integral equations is obtained. Through numerical treatment and normal-tangential iteration, the normal contact stress,tangential stress and contact width of plastic gears are acquired.展开更多
Using a simple and reliable apparatus, the solubilities of adipic acid in water, ethanol, chloroform, n-butanol and acetone are determined by the analytic method. The results are correlated with λh equation, Apelblat...Using a simple and reliable apparatus, the solubilities of adipic acid in water, ethanol, chloroform, n-butanol and acetone are determined by the analytic method. The results are correlated with λh equation, Apelblat equation, and UNIFAC equation. The solubilities calculated by these models are in good agreement with experi-mental data, so that the models can meet the requirements of engineering design.展开更多
The purpose of this paper is to investigate the feasibility of high-frequency induction heat for the line heating process through a series of experimental studies and numerical calculations. The results show that the ...The purpose of this paper is to investigate the feasibility of high-frequency induction heat for the line heating process through a series of experimental studies and numerical calculations. The results show that the heating temperature of induction heating meets the demands of steel plate bending, and the deformation of a steel plate heated by induction heating can achieve the same effect as flame heating. Meanwhile, the finite element model of moving induction heating of the plate is developed, and the comparison of the residual strain fields and transverse shrinkage between these two kinds of heating shows that great similarity has been achieved.展开更多
The expression of residual is obtained according to its dynamic response to mean shift, then the distribu- tion of T2 statistic applied to the residual is derived, thus the probability of the 7a statistic lying outsid...The expression of residual is obtained according to its dynamic response to mean shift, then the distribu- tion of T2 statistic applied to the residual is derived, thus the probability of the 7a statistic lying outside the control limit is calculated. The above-mentioned results are substituted into the infinite definition expression of the average run length (ARL), and then the final finite ARL expression is obtained. An example is used to demonstrate the procedures of the proposed method. In the comparative study, eight autocorrelated processes and four different mean shifts are performed, and the ARL values of the proposed method are compared with those obtained by simulation method with 50 000 replications. The accuracy of the proposed method can be illustrated through the comparative results.展开更多
Batch extractive distillation(BED)is a special method used in the distillation process by adding a solvent into the batch distillation column to alter the relative volatility of the components and improve the separati...Batch extractive distillation(BED)is a special method used in the distillation process by adding a solvent into the batch distillation column to alter the relative volatility of the components and improve the separation. A comprehensive design and simulation method is required due to the complexity of BED.In this study,a quasi-steady-state model for BED is proposed,the derivation and solution of the model are presented.This shortcut model can be used to simulate the composition and temperature of the reboiler,the top and other plates of the column in a batch extractive distillation operation.The calculated values are in good agreement with the experimental data.The results show that the quasi-steady-state model is a practical method because of some advantages such as high precision and fast calculation.展开更多
Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device off...Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.展开更多
This paper mainly discusses the multiscale computation from a chemical engineering perspective.From the application designer's perspective,we propose a new approach to investigate and develop both flexible and eff...This paper mainly discusses the multiscale computation from a chemical engineering perspective.From the application designer's perspective,we propose a new approach to investigate and develop both flexible and efficient computer architectures. Based on the requirements of applications within one category,we first induce and extract some inherent computing patterns or core computing kernels from the applications.Some computing models and innovative computing architectures will then be developed for these patterns or kernels,as well as the software mapping techniques. Finally those applications which can share and utilize those computing patterns or kernels can be executed very efficiently on those novel computing architectures. We think that the proposed approach may not be achievable within the existing technology. However,we believe that it will be available in the near future. Hence,we will describe this approach from the following four aspects:multiscale environment in the world,mesoscale as a key scale,energy minimization multiscale(EMMS)paradigm and our perspective.展开更多
文摘MapReduce is a popular program- ming model for processing large-scale datasets in a distributed environment and is a funda- mental component of current cloud comput- ing and big data applications. In this paper, a heartbeat mechanism for MapReduce Task Scheduler using Dynamic Calibration (HMTS- DC) is proposed to address the unbalanced node computation capacity problem in a het- erogeneous MapReduce environment. HMTS- DC uses two mechanisms to dynamically adapt and balance tasks assigned to each com- pute node: 1) using heartbeat to dynamically estimate the capacity of the compute nodes, and 2) using data locality of replicated data blocks to reduce data transfer between nodes. With the first mechanism, based on the heart- beats received during the early state of the job, the task scheduler can dynamically estimate the computational capacity of each node. Us- ing the second mechanism, unprocessed Tasks local to each compute node are reassigned and reserved to allow nodes with greater capacities to reserve more local tasks than their weaker counterparts. Experimental results show that HMTS-DC performs better than Hadoop and Dynamic Data Placement Strategy (DDP) in a dynamic environment. Furthermore, an en- hanced HMTS-DC (EHMTS-DC) is proposed bv incorporatin historical data. In contrastto the "slow start" property of HMTS-DC, EHMTS-DC relies on the historical computation capacity of the slave machines. The experimental results show that EHMTS-DC outperforms HMTS-DC in a dynamic environment.
基金Projects(2012zzts019,2012QNZT048)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(201306370121)supported by the State Scholarship Fund of China+3 种基金Project(JT20090898002)supported by Traffic Technology Fund of Hainan Province,ChinaProject(2012M521563)supported by the China Postdoctoral Science FoundationProject(51248006)supported by The National Natural Science Foundation of ChinaProject(511114)supported by the Natural Science Foundation of Hainan Province,China
文摘In order to simplify the boundary conditions of pavement temperature field,the "Environment-Surface" system which considered the natural environment and pavement surface was established.Based on this system,the partial differential equations of the one-dimensional heat conduction in the pavement were established on the basis of the heat transfer theory.Furthermore,the function forms of the initial and boundary conditions of the equations were created through the field experiments.The general solution of the pavement one-dimensional heat conduction partial differential equations was acquired by using Green's function,and the explicit expression of pavement temperature field under specific constraint conditions was derived.For the purpose of analysis,the pavement temperatures in different seasons were calculated using the explicit expression of pavement temperature field,and the calculation accuracy was analyzed through the comparison between measured and calculated values.Then,the relationship between fitting accuracy and calculation accuracy of pavement temperatures was analyzed.The analysis results show that: the usage of "Environment-Surface" system simplifies the calculation of pavement temperature field; the relative error between calculated and measured values is generally less than 7% and is seldom influenced by seasons; there is a positive correlation between the calculation accuracy and the fitting accuracy of pavement surface temperature; high fitting accuracy would result in less error of pavement temperature prediction.
文摘The insertion loss of acoustic radiation of damped cylindrical shell described by 3-D elasticity Navier equations under radial harmonic applied load in fluid is presented. The classical integral transform technique, potential theory and Lamè resolution are used to derive the solutions of Navier equations. The higher precision inversion computation is introduced to solve the linear equations. Comparing with acoustic radiation of one-layer cylindrical shell, the influence of thickness, mass density, dilatational wave loss factor and Young's modulus of damping material and circumferential mode number of the cylindrical shell on the insertion loss is concluded. The theoretical model in the paper can be used to deal with the arbitrary thickness and any frequency of the coated layer in dynamic problem. The conclusions may be of theoretical reference to the application of damping material to noise and vibration control of submarines and underwater pipes.
文摘Recently, Morabito(2010) has studied the water spray phenomena in planing hulls and presented new analytical equations. However, these equations have not been used for detailed parametric studies of water spray around planing hulls. In this paper, a straight forward analysis is conducted to apply these analytical equations for finding the spray geometry profile by developing a computer program based on presented computational process. The obtained results of the developed computer program are compared against existing data in the literature and favorable accuracy is achieved. Parametric studies have been conducted for different physical parameters. Positions of spray apex are computed and three dimensional profiles of spray are examined. It is concluded that spray height increases by an increase in the speed coefficient or the deadrise angle. Ultimately, a computational process is added to Savitsky's method and variations of spray apex are computed for different velocities. It is shown that vertical, lateral, and longitudinal positions of spray increase as the craft speed increases. On the other hand, two new angles are defined in top view and it is concluded that they have direct relation with the trim angle. However, they show inverse relation with the deadrise angle.
文摘A non-relativistic microscopic mean field theory of finite nuclei is investigated where the nucleus is described as a collection of nucleons and delta resonances. The ground state properties of 90Zr nucleus have been investigated at equilibrium and large amplitude compression using a realistic effective baryon-baryon Hamiltonian based on Reid Soft Core (RSC) potential. The sensitivity of the ground state properties is studied, such as binding energy, nuclear radius, radial density distribution, and single particle energies to the degree of compression. It is found that the most of increasing in the nuclear energy generated under compression is used to create the massive Δ particles. For 90Zr nucleus under compression at 2.5 times density of the normal nuclear density, the excited nucleons to Δ 's are increased sharply up to 14% of the total number of constituents. This result is consistent with the values extracted from relativistic heavy-ion collisions. The single particle energy levels are calculated and their behaviors under compression are examined too. A good agreement between results with effective Hamiltonian and the phenomenologieal shell model for the low lying single-particle spectra is obtained. A considerable reduction in compressibility for the nucleus, and softening of the equation of state with the inclusion of the Δ's in the nuclear dynamics are suggested by the results.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50071046)the National Hi-Tech Research and Development Program ofChina (Grant No.2002AA331051).
文摘Based on the microscopic elasticity theory and microscopic diffusion equation, the precipitation progress of the binary alloys including coherent strain energy was studied. The results show that coherent strain has obvious effect on the coherent two-phase morphology and precipitation mechanism. With the increase of coherent strain energy, the particles shape changes from the randomly distributed equiaxed particels to elliptical precipitate shapes,their arrangement orientation increases; in the late stage of precipitation, the particle arrangement presents obvious directionality along the [10]and[01]directions, and the precipitation mechanism of alloy changes from typical spinodal decomposition mechanism to the mixture process which possesses the characteristics of both non-classical nucleation growth and spinodal decomposition mechanisms.
文摘A calculation method of contact problem of plastic gears based on three parameter model of viscoelasticity material is presented. In this calculation method, the influence of temperature upon the property of plastics is considered and an iteration process of temperature-elasticity module-friction coefficient is proposed. From the rolling contact problem of two viscoelastic cylinders with parallel axis, a set of normal-tangential contact coupled integral equations is obtained. Through numerical treatment and normal-tangential iteration, the normal contact stress,tangential stress and contact width of plastic gears are acquired.
基金Supported by the Natural Science Foundation of Henan Province (0511021700)
文摘Using a simple and reliable apparatus, the solubilities of adipic acid in water, ethanol, chloroform, n-butanol and acetone are determined by the analytic method. The results are correlated with λh equation, Apelblat equation, and UNIFAC equation. The solubilities calculated by these models are in good agreement with experi-mental data, so that the models can meet the requirements of engineering design.
基金Supported by the National Natural Science Foundation of China (50805016)
文摘The purpose of this paper is to investigate the feasibility of high-frequency induction heat for the line heating process through a series of experimental studies and numerical calculations. The results show that the heating temperature of induction heating meets the demands of steel plate bending, and the deformation of a steel plate heated by induction heating can achieve the same effect as flame heating. Meanwhile, the finite element model of moving induction heating of the plate is developed, and the comparison of the residual strain fields and transverse shrinkage between these two kinds of heating shows that great similarity has been achieved.
基金Supported by National Natural Science Foundation of China (No.70931004 and No. 70802043)
文摘The expression of residual is obtained according to its dynamic response to mean shift, then the distribu- tion of T2 statistic applied to the residual is derived, thus the probability of the 7a statistic lying outside the control limit is calculated. The above-mentioned results are substituted into the infinite definition expression of the average run length (ARL), and then the final finite ARL expression is obtained. An example is used to demonstrate the procedures of the proposed method. In the comparative study, eight autocorrelated processes and four different mean shifts are performed, and the ARL values of the proposed method are compared with those obtained by simulation method with 50 000 replications. The accuracy of the proposed method can be illustrated through the comparative results.
基金Supported by the Natural Science Foundation of Hebei Province(B2006000018)
文摘Batch extractive distillation(BED)is a special method used in the distillation process by adding a solvent into the batch distillation column to alter the relative volatility of the components and improve the separation. A comprehensive design and simulation method is required due to the complexity of BED.In this study,a quasi-steady-state model for BED is proposed,the derivation and solution of the model are presented.This shortcut model can be used to simulate the composition and temperature of the reboiler,the top and other plates of the column in a batch extractive distillation operation.The calculated values are in good agreement with the experimental data.The results show that the quasi-steady-state model is a practical method because of some advantages such as high precision and fast calculation.
基金supported by National Natural Science Foundation of China (Grant No.61261017, No.61571143 and No.61561014)Guangxi Natural Science Foundation (2013GXNSFAA019334 and 2014GXNSFAA118387)+3 种基金Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (No.CRKL150112)Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (GXKL0614202, GXKL0614101 and GXKL061501)Sci.and Tech.on Info.Transmission and Dissemination in Communication Networks Lab (No.ITD-U14008/KX142600015)Graduate Student Research Innovation Project of Guilin University of Electronic Technology (YJCXS201523)
文摘Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.
文摘This paper mainly discusses the multiscale computation from a chemical engineering perspective.From the application designer's perspective,we propose a new approach to investigate and develop both flexible and efficient computer architectures. Based on the requirements of applications within one category,we first induce and extract some inherent computing patterns or core computing kernels from the applications.Some computing models and innovative computing architectures will then be developed for these patterns or kernels,as well as the software mapping techniques. Finally those applications which can share and utilize those computing patterns or kernels can be executed very efficiently on those novel computing architectures. We think that the proposed approach may not be achievable within the existing technology. However,we believe that it will be available in the near future. Hence,we will describe this approach from the following four aspects:multiscale environment in the world,mesoscale as a key scale,energy minimization multiscale(EMMS)paradigm and our perspective.