This study expands on recent reports that direct development in the Chinese potamid freshwater crab Sinopotamon yangtsekiense involves the completion of all brachyuran larval stages (nauplius, zoea, and megalopa) insi...This study expands on recent reports that direct development in the Chinese potamid freshwater crab Sinopotamon yangtsekiense involves the completion of all brachyuran larval stages (nauplius, zoea, and megalopa) inside the egg case during embryonic development. Detailed studies of embryonic development in this species revealed the presence of an additional larval stage (the egg-juvenile) between the megalopa and the free-living hatchling crab. We described and compared the appendages of the head, thorax, and abdomen of the egg-juvenile with those of the hatchling crab in S. yangtsekiense. Significant differences were found between most of the appendages of these two stages with a soft exoskeleton in the egg-juvenile, no joint articulation, a slimmer appearance, and a lack of setae when compared with the newly emerged free-living hatchling crab. These modifications of the appendages are related to the confinement within the egg case of the egg-megalopa and egg-juvenile during direct development, and the need for the free-living hatchling freshwater crab to move, feed, and respire. In marine crabs, the megalopa gives rise to the first crab stage whereas in freshwater crabs the egg-juvenile follows the megalopa and immediately precedes the free-living first crab stage.展开更多
Boulder block ramps are river engineering structures used to stabilise river beds. Block ramps provide a semi-natural and aesthetically pleasing solution to certain river engineering problems in mountain streams. When...Boulder block ramps are river engineering structures used to stabilise river beds. Block ramps provide a semi-natural and aesthetically pleasing solution to certain river engineering problems in mountain streams. When constructing block ramps,one can use the dissipative behaviour of large macroroughness elements randomly placed on the river bed to enhance fish migration in an upstream direction thus, in this sense, meeting the requirements of the EU Water Framework Directive. Block ramps are often designed and constructed to replace damaged drop hydraulic structures in the channels of mountain streams. This paper investigates the resilience of a particular block ramp placed in the Krzczonówka stream(Polish Carpathians) in terms of the engineering design function and its durability against damaging. A hydrodynamic analysis of a block ramp is presented before and after a flood event that changed the configuration of the blocks. The seminatural unstructured hydraulic structure was built on the Krzczonowka stream to protect gas pipes which are located beneath it. As a result of several floods, the boulder block chute described in this paper was damaged, and some boulders were dislodged and transported downstream. Our post-flood investigations of bathymetry and velocity revealed that even damaged boulder blocks, removed from the chute and displaced downstream of the structure, still provide significant energy dissipation of the flowing water. The novel of our paper is for the first time showing very detailed analysis of unstructured block ramp hydrodynamics parameters done in the field.Also the novel finding of our investigations shows that before and after the flood event the unstructured block ramp structure, is still fish friendly in terms of hydrodynamics.展开更多
基金Supported by the Leading Academic Discipline Project of Shanghai Municipal Education Commission(No.J50701)
文摘This study expands on recent reports that direct development in the Chinese potamid freshwater crab Sinopotamon yangtsekiense involves the completion of all brachyuran larval stages (nauplius, zoea, and megalopa) inside the egg case during embryonic development. Detailed studies of embryonic development in this species revealed the presence of an additional larval stage (the egg-juvenile) between the megalopa and the free-living hatchling crab. We described and compared the appendages of the head, thorax, and abdomen of the egg-juvenile with those of the hatchling crab in S. yangtsekiense. Significant differences were found between most of the appendages of these two stages with a soft exoskeleton in the egg-juvenile, no joint articulation, a slimmer appearance, and a lack of setae when compared with the newly emerged free-living hatchling crab. These modifications of the appendages are related to the confinement within the egg case of the egg-megalopa and egg-juvenile during direct development, and the need for the free-living hatchling freshwater crab to move, feed, and respire. In marine crabs, the megalopa gives rise to the first crab stage whereas in freshwater crabs the egg-juvenile follows the megalopa and immediately precedes the free-living first crab stage.
基金financed by the Ministry of Science and Higher Education of the Republic of Poland: 1. Cracow University of Technology, Faculty of Civil Engineering: L4/106/2018/DS, L4/107/2018/DS and L4/585/2018/DS-M. 2. University of Agriculture in Krakow: BM2313/KIWi G/2018
文摘Boulder block ramps are river engineering structures used to stabilise river beds. Block ramps provide a semi-natural and aesthetically pleasing solution to certain river engineering problems in mountain streams. When constructing block ramps,one can use the dissipative behaviour of large macroroughness elements randomly placed on the river bed to enhance fish migration in an upstream direction thus, in this sense, meeting the requirements of the EU Water Framework Directive. Block ramps are often designed and constructed to replace damaged drop hydraulic structures in the channels of mountain streams. This paper investigates the resilience of a particular block ramp placed in the Krzczonówka stream(Polish Carpathians) in terms of the engineering design function and its durability against damaging. A hydrodynamic analysis of a block ramp is presented before and after a flood event that changed the configuration of the blocks. The seminatural unstructured hydraulic structure was built on the Krzczonowka stream to protect gas pipes which are located beneath it. As a result of several floods, the boulder block chute described in this paper was damaged, and some boulders were dislodged and transported downstream. Our post-flood investigations of bathymetry and velocity revealed that even damaged boulder blocks, removed from the chute and displaced downstream of the structure, still provide significant energy dissipation of the flowing water. The novel of our paper is for the first time showing very detailed analysis of unstructured block ramp hydrodynamics parameters done in the field.Also the novel finding of our investigations shows that before and after the flood event the unstructured block ramp structure, is still fish friendly in terms of hydrodynamics.