The Chinese standard Q/SHR001-95 for base stocks is compared with the APIspecifications. The viscosity-temperature characteristics of base stock required by lube oil in useand market demand on oil quality are analyzed...The Chinese standard Q/SHR001-95 for base stocks is compared with the APIspecifications. The viscosity-temperature characteristics of base stock required by lube oil in useand market demand on oil quality are analyzed. The quality indicators of base stocks in China andother countries are compared. A new classification of base stocks in response to the requirements ofmodern lube oil is proposed and the research on new technology to produce premium base stocksmeeting API specification is recommended on the basis of current base stock processing technology.展开更多
In order to effectively reduce the viscosity of heavy oil during steam injection, a catalyst system, consisting of reservoir minerals, nickel sulfate, and formic acid, was used to exert catalytic effect on aquathermol...In order to effectively reduce the viscosity of heavy oil during steam injection, a catalyst system, consisting of reservoir minerals, nickel sulfate, and formic acid, was used to exert catalytic effect on aquathermolysis of heavy crude oil extracted from the Liaohe oilfield. Experimental results indicated that all the reservoir minerals used in the experiment had catalytic effect on aquathermolysis and the oil viscosity reduction rate ranged from 24% to 36% after the aquathermolysis reaction. If nickel sulfate was used as the catalyst and added to the reaction system, the oil viscosity reduction rate could reach 50%. If formic acid was used as the hydrogen donor, the oil viscosity reduction rate could increase further, and could reach up to 71.8%. The aquathermolysis reaction of heavy oil under steam injection condition was affected by the reaction temperature, the reaction time, the dosage of minerals, the catalyst concentration, and the hydrogen donor. The experimental results showed that minerals, catalyst and hydrogen donor could work together to enhance aquathermolysis reaction of heavy oil in the presence of the high-temperature water vapor.展开更多
From the viewpoint of process specifics and thermodynamics, this article has put forward a route for maximiza- tion of low-carbon olefins via co-processing of methanol and heavy oil. Catalytic cracking experiments on ...From the viewpoint of process specifics and thermodynamics, this article has put forward a route for maximiza- tion of low-carbon olefins via co-processing of methanol and heavy oil. Catalytic cracking experiments on co-processing of methanol and heavy oil at different ratios in a fixed fluidized bed reactor had been conducted. Test results have revealed that when 12.5% of methanol was blended to the heavy oil a good products distribution and relatively higher yield of low-carbon olefins could be obtained. The overall yield of low-carbon olefins could reach 50.16%, with the yield of ethylene, propylene and butylene equating to 5.47 %, 28.93% and 15.76 %, respectively.展开更多
Shot cokes are frequently formed in the delayed coking unit treating the super viscous oil at PetroChina's Liaohe Petrochemical Company. Considerable work has been carded out to avoid the formation of shot cokes. The...Shot cokes are frequently formed in the delayed coking unit treating the super viscous oil at PetroChina's Liaohe Petrochemical Company. Considerable work has been carded out to avoid the formation of shot cokes. The test results obtained have shown that the property of super viscous oil has played a key role in the formation of shot cokes. After adjusting and optimizing the process indices the operating regime of the delayed coking unit at a throughput of 118t/h of the super viscous oil is specified as follows: a reaction temperature of 498-502℃, a reaction pressure of 0.17-0.25 MPa, a recycle ratio of 0.5-0.6 and a fractionation tower bottom temperature of 355-365 ℃. In the meantime, the delayed coking process has adopted measures to enhance pre-fractionation of the feedstock to rationally remove light fractions and maintain a steady gas velocity in order to avoid the formation of shot cokes.展开更多
In terms of tectonic evolution and petroleum geological conditions of the Nepa-Botuoba Sub-basin and its adjacent su4b-basins,the accumulation conditions of the heavy oil were analyzed. The studied area had plenty of ...In terms of tectonic evolution and petroleum geological conditions of the Nepa-Botuoba Sub-basin and its adjacent su4b-basins,the accumulation conditions of the heavy oil were analyzed. The studied area had plenty of oil and gas accumulation,but there were no developed source rocks. It is a typical outside source accumulation,whose origins from thick high-quality source rock deposited in the adjacent sub-basins. The shallow layer has favorable heavy oil reservoir conditions and poor sealing conditions,which benefits the thickening of hydrocarbon. The multi-periods of structural compression not only uplifted the studied area drastically,but also created a series of fault zones and large-scale slope belt. The structural compression also provided channel and sufficient power for migration of hydrocarbon to shallow layers. Based on these conditions,the favorable accumulation zone of heavy oil was predicted,which provided direction for heavy oil exploration in Nepa-Botuoba Subbasin.展开更多
The process of use catalyst or functional material that contains iron ion to weaken -O-H-O- hydrogen bond of the thick oil to reduce viscidity or crack, in aspects of the ion charge. covalent bond order, total energy ...The process of use catalyst or functional material that contains iron ion to weaken -O-H-O- hydrogen bond of the thick oil to reduce viscidity or crack, in aspects of the ion charge. covalent bond order, total energy and the average distance of Fe-O. is studied with density function theory and discrete variational method (DFT-DVM), one of the first principle methods. With the decrease of the distance of Fe-O. the charge of Fe ion increases, the charge of hydrogen ion decreases, and hydrogen bond is weakened. There are obvious and more stable effects to use the catalyst that contains multiple metal ions or increase the catalyst amount in weakening hydrogen bond of the thick oil. This theoretic work is helpful to exploit and process the thick oil of petroleum and maybe overcome the crisis of petroleum energy is approaching to us.展开更多
The worldwide proven recoverable reserves of conventional oil are less than the amount of the heavy oil.Owing to weakly consolidated formation,sand production is an important problem encountered during oil production ...The worldwide proven recoverable reserves of conventional oil are less than the amount of the heavy oil.Owing to weakly consolidated formation,sand production is an important problem encountered during oil production in heavy oil reservoirs,for which frac-pack technique is one of the most common treatments.Hence,how to obtain the optimal fracture geometry is the key to increasing well production and preventing sand.Due to the faultiness that current optimization of the fracture geometry only depends on well productivity,fracture-flow fraction was used to describe the contribution of the fracture collecting and conducting fluids from the reservoir.The higher the fracture-flow fraction,the more likely bilinear flow pattern occurs,thus leading to smaller flow resistance and better results in oil productivity and sand prevention.A reservoir numerical simulation model was established to simulate the long-term production dynamic of a fractured well in rectangular drainage areas.In order to reach the aim of increasing productivity meanwhile preventing sand,a new method based on Unified Fracture Design was developed to optimize the fracture geometry.For a specific reservoir and a certain amount of proppant injected to the target layer,there exits an optimal dimensionless fracture conductivity which corresponds to the maximum fracture-flow fraction,accordingly we can get the optimal fracture geometry.The formulas of the optimal fracture geometry were presented on square drainage area conditions,which are very convenient to apply.Equivalent Proppant Number was used to eliminate the impact of aspect ratios of rectangular drainage area,then,the same method to optimize the fracture geometry as mentioned for square drainage areas could be adopted too.展开更多
文摘The Chinese standard Q/SHR001-95 for base stocks is compared with the APIspecifications. The viscosity-temperature characteristics of base stock required by lube oil in useand market demand on oil quality are analyzed. The quality indicators of base stocks in China andother countries are compared. A new classification of base stocks in response to the requirements ofmodern lube oil is proposed and the research on new technology to produce premium base stocksmeeting API specification is recommended on the basis of current base stock processing technology.
基金the financial supports from National Key Project of Scientific and Technical Supporting Programs:Enhancing oil displacement efficiency during steamfloods(fund No.2008ZX05012-001)
文摘In order to effectively reduce the viscosity of heavy oil during steam injection, a catalyst system, consisting of reservoir minerals, nickel sulfate, and formic acid, was used to exert catalytic effect on aquathermolysis of heavy crude oil extracted from the Liaohe oilfield. Experimental results indicated that all the reservoir minerals used in the experiment had catalytic effect on aquathermolysis and the oil viscosity reduction rate ranged from 24% to 36% after the aquathermolysis reaction. If nickel sulfate was used as the catalyst and added to the reaction system, the oil viscosity reduction rate could reach 50%. If formic acid was used as the hydrogen donor, the oil viscosity reduction rate could increase further, and could reach up to 71.8%. The aquathermolysis reaction of heavy oil under steam injection condition was affected by the reaction temperature, the reaction time, the dosage of minerals, the catalyst concentration, and the hydrogen donor. The experimental results showed that minerals, catalyst and hydrogen donor could work together to enhance aquathermolysis reaction of heavy oil in the presence of the high-temperature water vapor.
文摘From the viewpoint of process specifics and thermodynamics, this article has put forward a route for maximiza- tion of low-carbon olefins via co-processing of methanol and heavy oil. Catalytic cracking experiments on co-processing of methanol and heavy oil at different ratios in a fixed fluidized bed reactor had been conducted. Test results have revealed that when 12.5% of methanol was blended to the heavy oil a good products distribution and relatively higher yield of low-carbon olefins could be obtained. The overall yield of low-carbon olefins could reach 50.16%, with the yield of ethylene, propylene and butylene equating to 5.47 %, 28.93% and 15.76 %, respectively.
文摘Shot cokes are frequently formed in the delayed coking unit treating the super viscous oil at PetroChina's Liaohe Petrochemical Company. Considerable work has been carded out to avoid the formation of shot cokes. The test results obtained have shown that the property of super viscous oil has played a key role in the formation of shot cokes. After adjusting and optimizing the process indices the operating regime of the delayed coking unit at a throughput of 118t/h of the super viscous oil is specified as follows: a reaction temperature of 498-502℃, a reaction pressure of 0.17-0.25 MPa, a recycle ratio of 0.5-0.6 and a fractionation tower bottom temperature of 355-365 ℃. In the meantime, the delayed coking process has adopted measures to enhance pre-fractionation of the feedstock to rationally remove light fractions and maintain a steady gas velocity in order to avoid the formation of shot cokes.
基金National Science and Technology Major Project(2011ZX05028-002)The Science and Technology Major Project of PetroChina Company Limited(2012E-0501)
文摘In terms of tectonic evolution and petroleum geological conditions of the Nepa-Botuoba Sub-basin and its adjacent su4b-basins,the accumulation conditions of the heavy oil were analyzed. The studied area had plenty of oil and gas accumulation,but there were no developed source rocks. It is a typical outside source accumulation,whose origins from thick high-quality source rock deposited in the adjacent sub-basins. The shallow layer has favorable heavy oil reservoir conditions and poor sealing conditions,which benefits the thickening of hydrocarbon. The multi-periods of structural compression not only uplifted the studied area drastically,but also created a series of fault zones and large-scale slope belt. The structural compression also provided channel and sufficient power for migration of hydrocarbon to shallow layers. Based on these conditions,the favorable accumulation zone of heavy oil was predicted,which provided direction for heavy oil exploration in Nepa-Botuoba Subbasin.
基金Acknowledgments: Thanks for the subsidization by the National Science Foundation of China (No. 50774070), Ministry of Education of China (PCSIRT0644) and Open Fund of the State Key Lab of Theoretical & Computational Chemistry.
文摘The process of use catalyst or functional material that contains iron ion to weaken -O-H-O- hydrogen bond of the thick oil to reduce viscidity or crack, in aspects of the ion charge. covalent bond order, total energy and the average distance of Fe-O. is studied with density function theory and discrete variational method (DFT-DVM), one of the first principle methods. With the decrease of the distance of Fe-O. the charge of Fe ion increases, the charge of hydrogen ion decreases, and hydrogen bond is weakened. There are obvious and more stable effects to use the catalyst that contains multiple metal ions or increase the catalyst amount in weakening hydrogen bond of the thick oil. This theoretic work is helpful to exploit and process the thick oil of petroleum and maybe overcome the crisis of petroleum energy is approaching to us.
基金supported by the National Science and Technology Major Projects of China (Grant No. 2008ZX05024-03-003-004)
文摘The worldwide proven recoverable reserves of conventional oil are less than the amount of the heavy oil.Owing to weakly consolidated formation,sand production is an important problem encountered during oil production in heavy oil reservoirs,for which frac-pack technique is one of the most common treatments.Hence,how to obtain the optimal fracture geometry is the key to increasing well production and preventing sand.Due to the faultiness that current optimization of the fracture geometry only depends on well productivity,fracture-flow fraction was used to describe the contribution of the fracture collecting and conducting fluids from the reservoir.The higher the fracture-flow fraction,the more likely bilinear flow pattern occurs,thus leading to smaller flow resistance and better results in oil productivity and sand prevention.A reservoir numerical simulation model was established to simulate the long-term production dynamic of a fractured well in rectangular drainage areas.In order to reach the aim of increasing productivity meanwhile preventing sand,a new method based on Unified Fracture Design was developed to optimize the fracture geometry.For a specific reservoir and a certain amount of proppant injected to the target layer,there exits an optimal dimensionless fracture conductivity which corresponds to the maximum fracture-flow fraction,accordingly we can get the optimal fracture geometry.The formulas of the optimal fracture geometry were presented on square drainage area conditions,which are very convenient to apply.Equivalent Proppant Number was used to eliminate the impact of aspect ratios of rectangular drainage area,then,the same method to optimize the fracture geometry as mentioned for square drainage areas could be adopted too.