We present a protocol for quantum private comparison of equality(QPCE) with the help of a semi-honest third party(TP).Instead of employing the entanglement,we use single photons to achieve the comparison in this proto...We present a protocol for quantum private comparison of equality(QPCE) with the help of a semi-honest third party(TP).Instead of employing the entanglement,we use single photons to achieve the comparison in this protocol.By utilizing collective eavesdropping detection strategy,our protocol has the advantage of higher qubit efficiency and lower cost of implementation.In addition to this protocol,we further introduce three robust versions which can be immune to collective dephasing noise,collective-rotation noise and all types of unitary collective noise,respectively.Finally,we show that our protocols can be secure against the attacks from both the outside eavesdroppers and the inside participants by using the theorems on quantum operation discrimination.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.61272057,61170270,61100203,61003286,61121061 and 61103210)the Program for New Century Excellent Talents in Universities (Grant No.NCET-10-0260)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20090005110010)the Natural Science Foundation of Beijing (Grant Nos.4112040 and 4122054)the Fundamental Research Funds for the Central Universities (Grant No.2011YB01)the BUPT Excellent Ph.D.Students Foundation (Grant No.CX201217)
文摘We present a protocol for quantum private comparison of equality(QPCE) with the help of a semi-honest third party(TP).Instead of employing the entanglement,we use single photons to achieve the comparison in this protocol.By utilizing collective eavesdropping detection strategy,our protocol has the advantage of higher qubit efficiency and lower cost of implementation.In addition to this protocol,we further introduce three robust versions which can be immune to collective dephasing noise,collective-rotation noise and all types of unitary collective noise,respectively.Finally,we show that our protocols can be secure against the attacks from both the outside eavesdroppers and the inside participants by using the theorems on quantum operation discrimination.