We compute the mass and temperature of third order Lovelock black holes with negative Gauss-Bonnet coefficient a2 〈 0 in anti-de Sitter space and perform the stability analysis of topological black holes. When k = -1...We compute the mass and temperature of third order Lovelock black holes with negative Gauss-Bonnet coefficient a2 〈 0 in anti-de Sitter space and perform the stability analysis of topological black holes. When k = -1, the third order Lovelock black holes are thermodynamically stable for the whole range r+. When k = 1, we found that the black hole has an intermediate unstable phase for D = 7. In eight dimensional spacetimes, however, a new phase of thermodynamically unstable small black holes appears if the coefficient a is under a critical value. For D ≥ 9, black holes have similar the distributions of thermodynamically stable regions to the case where the coefficient & is under a critical value for D = 8. It is worth to mention that all the thermodynamic and conserved quantities of the black holes with fiat horizon do not depend on the Loveloek coefficients and are the same as those of black holes in general gravity.展开更多
Ground stress is the fundamental cause of deformation and failure during underground structural engineering. Field stress measurements in the main coal bed in the Lueliang mining area were made by the bore hole, stres...Ground stress is the fundamental cause of deformation and failure during underground structural engineering. Field stress measurements in the main coal bed in the Lueliang mining area were made by the bore hole, stress relief method. From these data the ground stress distribution of the mining area was obtained. The relationship between the horizontal principal stress and the deformation and failure of a roadway is discussed with an engineering example. The results indicate that horizontal stress dominates in the shallow crust in the Ltiliang mining area. Roadways at different angles to the maximum principal stress have different levels of stress concentration. This leads to a significant difference in stability of the corresponding roadways. These research results provide an important criterion for determining roadway position and direction, stope layout, and roadway support design.展开更多
文摘We compute the mass and temperature of third order Lovelock black holes with negative Gauss-Bonnet coefficient a2 〈 0 in anti-de Sitter space and perform the stability analysis of topological black holes. When k = -1, the third order Lovelock black holes are thermodynamically stable for the whole range r+. When k = 1, we found that the black hole has an intermediate unstable phase for D = 7. In eight dimensional spacetimes, however, a new phase of thermodynamically unstable small black holes appears if the coefficient a is under a critical value. For D ≥ 9, black holes have similar the distributions of thermodynamically stable regions to the case where the coefficient & is under a critical value for D = 8. It is worth to mention that all the thermodynamic and conserved quantities of the black holes with fiat horizon do not depend on the Loveloek coefficients and are the same as those of black holes in general gravity.
基金supported by the National Natural Science Foundation of China (No. 50874103)the National Basic Research Program of China (No. 2010CB226805)+1 种基金the Natural Science Foundation of Jiangsu Province (No. BK2008135)the Open Foundation of State Key Laboratory of Geomechanics and Deep Underground Engineering (No. SKLGDUEK0905)
文摘Ground stress is the fundamental cause of deformation and failure during underground structural engineering. Field stress measurements in the main coal bed in the Lueliang mining area were made by the bore hole, stress relief method. From these data the ground stress distribution of the mining area was obtained. The relationship between the horizontal principal stress and the deformation and failure of a roadway is discussed with an engineering example. The results indicate that horizontal stress dominates in the shallow crust in the Ltiliang mining area. Roadways at different angles to the maximum principal stress have different levels of stress concentration. This leads to a significant difference in stability of the corresponding roadways. These research results provide an important criterion for determining roadway position and direction, stope layout, and roadway support design.