We study the stabilization of the soliton transported bio-energy by the dynamic equations in the improved Davydov theory from four aspects containing the feature of free motion and states of the soliton at the long-ti...We study the stabilization of the soliton transported bio-energy by the dynamic equations in the improved Davydov theory from four aspects containing the feature of free motion and states of the soliton at the long-time motion and at biological temperature 300 K and behaviors of collision of the solitons by Runge–Kutta method and physical parameter values appropriate to the α-helix protein molecules. We prove that the new solitons can move without dispersion at a constant speed retaining its shape and energy in free and long-time motions and can go through each other without scattering. If considering further influence of the temperature effect of heat bath on the soliton, it is still thermally stable at biological temperature 300 K and in a time as long as 300 ps and amino acid spacings as large as 400, which shows that the lifetime of the new soliton is at least 300 ps, which is consistent with analytic result obtained by quantum perturbation theory. These results exhibit that the new soliton is a possible carrier of bio-energy transport and the improved model is possibly a candidate for the mechanism of this transport.展开更多
For two-component disk-shaped Bose-Einstein condensates with repulsive atom-atom interaction, the small amplitude, finite and long wavelength nonlinear waves can be described by a Kadomtsev-Petviashvili-Ⅰ equation at...For two-component disk-shaped Bose-Einstein condensates with repulsive atom-atom interaction, the small amplitude, finite and long wavelength nonlinear waves can be described by a Kadomtsev-Petviashvili-Ⅰ equation at the lowest order from the originai coupled Gross-Pitaevskii equations. One- and two-soliton solutions of the Kadomtsev- Petviashvili-1 equation are given, therefore, the wave functions of both atomic gases are obtained as well. The instability of a soliton under higher-order long wavelength disturbance has been investigated. It is found that the instability depends on the angle between two directions of both soliton and disturbance.展开更多
We study numerically the propagating properties of soliton-transported bio-energy excited in the a-helix protein molecules with three channels in the cases of the short-time and long-time motions and its features of c...We study numerically the propagating properties of soliton-transported bio-energy excited in the a-helix protein molecules with three channels in the cases of the short-time and long-time motions and its features of collision at temperature T = 0 and biological temperature T = 300 K by the dynamic equations in the improved Davydov theory and fourth-order Runge-Kutta method, respectively. From these simulation experiments we see that the new solitons in the improved model can move without dispersion at a constant speed retaining its shape and energy in the cases of motion of both short-time or T = 0 and long time or T = 300 K and can go through each other without scattering in their collisions. In these cases its lifetime is, at least, 120 ps at 300 K, in which the soliton can travel over about 700 amino acid residues. This result is consistent with analytic result obtained by quantum perturbed theory in this model. In the meanwhile, the influences of structure disorder of a-helix protein molecules, including the inhomogeneous distribution of amino acids with different masses and fluctuations of spring constant, dipole-dipole interaction, exciton-phonon coupling constant and diagonal disorder, on the solitons are also studied by the fourth-order Runge-Kutta method. The results show that the soliton still is very robust against the structure disorders and thermal perturbation of proteins at biological temperature 300 K. Therefore we can conclude that the new soliton in the a-helix protein molecules with three channels is a possible carrier of bio-energy transport and the improved model is possibly a candidate for the mechanism of this transport.展开更多
Ricci solitons are natural generalizations of Einstein metrics on one hand, and are special solutions of the Ricci flow of Hamilton on the other hand. In this paper we survey some of the recent developments on Ricci s...Ricci solitons are natural generalizations of Einstein metrics on one hand, and are special solutions of the Ricci flow of Hamilton on the other hand. In this paper we survey some of the recent developments on Ricci solitons and the role they play in the singularity study of the Ricci flow.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No.19974034
文摘We study the stabilization of the soliton transported bio-energy by the dynamic equations in the improved Davydov theory from four aspects containing the feature of free motion and states of the soliton at the long-time motion and at biological temperature 300 K and behaviors of collision of the solitons by Runge–Kutta method and physical parameter values appropriate to the α-helix protein molecules. We prove that the new solitons can move without dispersion at a constant speed retaining its shape and energy in free and long-time motions and can go through each other without scattering. If considering further influence of the temperature effect of heat bath on the soliton, it is still thermally stable at biological temperature 300 K and in a time as long as 300 ps and amino acid spacings as large as 400, which shows that the lifetime of the new soliton is at least 300 ps, which is consistent with analytic result obtained by quantum perturbation theory. These results exhibit that the new soliton is a possible carrier of bio-energy transport and the improved model is possibly a candidate for the mechanism of this transport.
基金National Natural Science Foundation of China under Grant No.10575082the Natural Science Foundation of Gansu Province under Grant No.3ZS061-A25-013the Natural Science Foundation of Northwest Normal University under Grant No.NWNU-KJCXGC-013-17
文摘For two-component disk-shaped Bose-Einstein condensates with repulsive atom-atom interaction, the small amplitude, finite and long wavelength nonlinear waves can be described by a Kadomtsev-Petviashvili-Ⅰ equation at the lowest order from the originai coupled Gross-Pitaevskii equations. One- and two-soliton solutions of the Kadomtsev- Petviashvili-1 equation are given, therefore, the wave functions of both atomic gases are obtained as well. The instability of a soliton under higher-order long wavelength disturbance has been investigated. It is found that the instability depends on the angle between two directions of both soliton and disturbance.
基金The project supported by National Natural Science Foundation of China under Grant No. 19974034
文摘We study numerically the propagating properties of soliton-transported bio-energy excited in the a-helix protein molecules with three channels in the cases of the short-time and long-time motions and its features of collision at temperature T = 0 and biological temperature T = 300 K by the dynamic equations in the improved Davydov theory and fourth-order Runge-Kutta method, respectively. From these simulation experiments we see that the new solitons in the improved model can move without dispersion at a constant speed retaining its shape and energy in the cases of motion of both short-time or T = 0 and long time or T = 300 K and can go through each other without scattering in their collisions. In these cases its lifetime is, at least, 120 ps at 300 K, in which the soliton can travel over about 700 amino acid residues. This result is consistent with analytic result obtained by quantum perturbed theory in this model. In the meanwhile, the influences of structure disorder of a-helix protein molecules, including the inhomogeneous distribution of amino acids with different masses and fluctuations of spring constant, dipole-dipole interaction, exciton-phonon coupling constant and diagonal disorder, on the solitons are also studied by the fourth-order Runge-Kutta method. The results show that the soliton still is very robust against the structure disorders and thermal perturbation of proteins at biological temperature 300 K. Therefore we can conclude that the new soliton in the a-helix protein molecules with three channels is a possible carrier of bio-energy transport and the improved model is possibly a candidate for the mechanism of this transport.
基金Partially supported by the John Simon Guggenheim Memorial Foundation and NSF grants DMS-0354621and DMS-0506084.
文摘Ricci solitons are natural generalizations of Einstein metrics on one hand, and are special solutions of the Ricci flow of Hamilton on the other hand. In this paper we survey some of the recent developments on Ricci solitons and the role they play in the singularity study of the Ricci flow.