The experiments of primary and secondary instabilities with controlled excitation are carried out on a swept flat plate to study the process leading to the final breakdown of laminar flow. Two types of high frequency ...The experiments of primary and secondary instabilities with controlled excitation are carried out on a swept flat plate to study the process leading to the final breakdown of laminar flow. Two types of high frequency secondary instabilities are identified. The most amplified mode is centered about the inflection point of the crosswise profile of the boundary layer and is interpreted as inflectional instability, the other occurs in the one third of the boundary layer from the wall. The high frequency disturbances are highly amplified but they also saturate similarly to the primary and nonlinearly generated disturbances. Their main effect in the final breakdown seems interact with the disturbances is developed and thus widens the frequency spectrum to turbulent state.展开更多
A viscous Kelvin-Helmholtz criterion of the interfacial wave instability is proposed in this paper based on the linear stability analysis of a transient one-dimensional two-fluid model. In thismodel, the pressure is e...A viscous Kelvin-Helmholtz criterion of the interfacial wave instability is proposed in this paper based on the linear stability analysis of a transient one-dimensional two-fluid model. In thismodel, the pressure is evaluated using the local momentum balance rather than the hydrostatic approximation. The criterion predicts well the stability limit of stratified flow in horizontal and nearly horizontal pipes. The experimental and theoretical investigation on the effect of pipe inclination on the interfacial instability are carded out. It is found that the critical liquid height at the onset of interfacial wave instability is insensitive to the pipe inclination. However, the pipe inclination significantly affects critical superficial liquid velocity and wave velocity especially lor low gas velocities.展开更多
Most image reconstruction algorithms developed for electrical capacitance tomography (ECT) can only reconstruct qualitative images. Stabled quantitative image reconstruction is necessary for many applications. To get ...Most image reconstruction algorithms developed for electrical capacitance tomography (ECT) can only reconstruct qualitative images. Stabled quantitative image reconstruction is necessary for many applications. To get stable ECT image, the authors constructed a compressive operator and developed a new iterative algorithm, which can overcome the semi-convergence occurring in the Landweber iteration reconstruction technique. Experimental results showed that the stability and quality of re- constructed images are improved significantly.展开更多
Nocturnal temperature is crucial in stability determination, as well as parameterization in numerical models. In the present research, data from four tall towers are used to investigate the temperature oscillations ob...Nocturnal temperature is crucial in stability determination, as well as parameterization in numerical models. In the present research, data from four tall towers are used to investigate the temperature oscillations observed in the stable boundary layer, including the 307-m Boseong Tower on the southern coast of Korea, a 100-m tower in a grassland area of northern China, a 70-m tower in a desert area in northwestern China, and the 32S-m Beijing Tower. Large temperature oscillations, with amplitudes of about 2℃ and periods of several minutes to tens of minutes, are detected. Using the empirical mode decomposition method working as a high-pass filter, the oscillations of temperature are extracted from the original non-stationary and nonlinear temperature data. The daily variations and vertical distribution of the temperature oscillations are discussed. Generally strong temperature oscillations are found at tens of meters high during nighttime in the coastal area, in the steppe, and in the desert, when stable conditions have formed. Much weaker nocturnal temperature oscillations are observed in Beijing, where the large heat capacity of buildings and streets and artificial heat sources prevent the boundary layer conditions from becoming stable. Static stability expressed by the Brunt-Vaisala frequency is found to be an important factor for such temperature oscillation events, which is worthy of model parameterization.展开更多
A numerical study on premixed methane/ethylene/air flames with various ethylene fractions and equivalence ratios was conducted at room temperature and atmospheric pressure. The effects of ethylene addition on laminar ...A numerical study on premixed methane/ethylene/air flames with various ethylene fractions and equivalence ratios was conducted at room temperature and atmospheric pressure. The effects of ethylene addition on laminar burning velocity, flame structure and flame stability under the condition of lean burning were investigated. The results show that the laminar burning velocity increases with ethylene fraction, especially at a large equivalence ratio. More ethylene addition gives rise to higher concentrations of H, O and OH radicals in the flame, which significantly promotes chemical reactions, and a linear correlation exists between the laminar burning velocity and the maximum H + OH concentration in the reaction zone. With the increase of ethylene fraction, the adiabatic flame temperature is raised, while the inner layer temperature becomes lower, contributing to the enhancement of combustion. Markstein length and Markstein number, representative of the flame stability, increase as more ethylene is added, indicating the tendency of flame stability to improve with ethylene addition.展开更多
The data of modified isochronal testing of gas well is just used to calculate gas well deliverability. Fully utilizing well test data make it possible to obtain formation parameters, such as gas well deliverability, e...The data of modified isochronal testing of gas well is just used to calculate gas well deliverability. Fully utilizing well test data make it possible to obtain formation parameters, such as gas well deliverability, effective permeability and skin factor at the same time. Based on transient flow theory, the pressure drawdown equation of gas unsteady seepage can be deducted. One simulated case is used to illustrate the applicability of the proposed method. The result of analyzed case shows that the proposed method can provide accurate estimate of formation permeability and skin factor compared with the method of Homer curves.展开更多
In multi-hop cognitive radio networks ( CRNs), the heterogeneous environment increases the complexity of common control channel (CCC) formation and routing protocol design. In this paper, we consider the on-demand...In multi-hop cognitive radio networks ( CRNs), the heterogeneous environment increases the complexity of common control channel (CCC) formation and routing protocol design. In this paper, we consider the on-demand routing protocol transmits over CCC. However, since CR transceivers (secondary users) have different available channel sets and it must vacate the licensed channel when a primary user arrives, forming a CCC becomes a main challenge in routing protocol design for CRNs. Our proposed CCC formation algorithm is based on a spectrum-tree structure, which consists of all cluster heads in CRNs. The cluster heads are with smaller moving range and lower mobility, and also act as a router in the whole network which maintains information of its cluster. Hence, a route is constituted in part by a set of cluster-head identity (ID) numbers, which represent the spe- cific cluster heads the path traverses, and in part by a set of member nodes ID numbers, which are included in the clusters containing the source and destination nodes. Due to high mobility and dynamic available spectrum, we define the stability parameters of path as two parts. One stability parameter is mobility factor, which represents the probability that a pairwise node can keep in communication range for the next flow transmission. The another stability parameter is spectrum opportunistic (SOP) factor, which represents the probability that a pairwise links can obtain the assigned spectrum band for the next flow transmission. Simulation results show that CCC formation algorithm produces a high probability of CCC formation, and the proposed routing protocol performs better than typical routing protocols.展开更多
A new invariant, the second order potential vorticity(SPV), is derived in this paper. SPV is the dot product of vorticity and the potential vorticity(PV) gradient, and is proven conservative for a compressible, adiaba...A new invariant, the second order potential vorticity(SPV), is derived in this paper. SPV is the dot product of vorticity and the potential vorticity(PV) gradient, and is proven conservative for a compressible, adiabatic and frictionless atmosphere. Research shows that the new invariant may be used to indicate the evolution of PV, because SPV includes all the information that determines PV evolution: the wind field, and the PV gradient. Furthermore, SPV is capable of diagnosing heavy precipitation because of the strong signals it presents in areas of heavy rainfall. SPV also shows great potential as a comprehensive conserved quantity for indicating the dynamical tropopause and baroclinic instability.展开更多
The present paper reports the results of a detailed experimental study aimed at investigating the dynamics of a laminar separation bubble, from the origin of separation up to the breakdown to turbulence of the large s...The present paper reports the results of a detailed experimental study aimed at investigating the dynamics of a laminar separation bubble, from the origin of separation up to the breakdown to turbulence of the large scale co- herent structures generated as a consequence of the Kelvin-Helmholtz instability process. Measurements have been performed along a fiat plate installed within a double contoured test section, designed to produce an adverse pressure gradient typical of Ultra-High-Lift turbine blade profiles, which induces the formation of a laminar separation bubble at low Reynolds number condition. Measurements have been carried out by means of comple- mentary techniques: hot-wire (HW) anemometry, Laser Doppler Velocirnetry (LDV) and Particle Image Veloci- metry (PIV). The high accuracy 2-dimensional LDV results allow investigating reverse flow magnitude and both Reynolds normal and shear stress distributions along the separated flow region, while the high frequency response of the HW anemometer allows analyzing the amplification process of flow oscillations induced by instability mechanisms. PIV results complement the flow field analysis providing information on the generation and evolu- tion of the large scale coherent structures shed as a consequence of the separated shear layer roll-up, through in- stantaneous velocity vector maps. The simultaneous analysis of the data obtained by means of the different meas- uring techniques allows an in depth view of the instability mechanisms involved in the transition/reattachrnent processes of the separated shear layer.展开更多
Turbulence data(2008–2012) from a 325 m meteorological tower in Beijing, which consisted of three layers(47,140, and 280 m), was used to analyze the vertical distribution characteristics of turbulent transfer over Be...Turbulence data(2008–2012) from a 325 m meteorological tower in Beijing, which consisted of three layers(47,140, and 280 m), was used to analyze the vertical distribution characteristics of turbulent transfer over Beijing city according to similarity theory. The conclusions were as follows.(1) Normalized standard deviations of wind speeds/ui * were plotted as a function only of a local stability parameter. The values under near-neutral conditions were 2.15, 1.61, and 1.19 at 47 m, 2.39, 1.75,and 1.21 at 140 m, and 2.51, 1.77, and 1.30 at 280 m, showing a clear increase with height. The normalized standard deviation of wind components fitted the 1/3 law under unstable stratification conditions and decreased with height under both stable and unstable conditions.(2) The normalized standard deviation of temperature fitted the.1/3 law in the free convection limit, but was quite scattered with different characteristics under near-neutral conditions. The normalized standard deviations of humidity and the CO2 concentration fitted the.1/3 law under unstable conditions, and remained constant under near-neutral and stable stratification. The normalized standard deviation of scalars, i.e., temperature, humidity, and CO2 concentration, all increased with height.(3) Compared with momentum, and the water vapor and CO2 concentrations, the turbulence correlation coefficient for heat was smaller under near-neutral conditions, but larger under both stable and unstable conditions. A dissimilarity between heat, and the water vapor and CO2 concentrations was observed in urban areas. The relative correlation coefficients between heat and each of momentum, humidity, and CO2 concentration(|rwT/ruw|, |rwT/rwc| and |rwT/ruq|) in the lower layers were always larger than in higher layers, except for the relative correlation coefficient between heat and humidity in an unstable stratification. Therefore, the ratio between heat and each of momentum, humidity, and CO2 concentration decreased with height.展开更多
An experimental investigation on the near and far wake of a cascade of high-lift low-pressure turbine blades subjected to boundary layer separation over the suction side surface has been carried out, under steady and ...An experimental investigation on the near and far wake of a cascade of high-lift low-pressure turbine blades subjected to boundary layer separation over the suction side surface has been carried out, under steady and unsteady inflows. Two Reynolds number conditions, representative of take-off/landing and cruise operating conditions of the real engine, have been tested. The effect of upstream wake-boundary layer interaction on the wake shed from the profile has been investigated in a three-blade large-scale linear turbine cascade. The comparison between the wakes shed under steady and unsteady inflows has been performed through the analysis of mean velocity and Reynolds stress components measured at midspan of the central blade by means of a two-component crossed miniature hot-wire probe. The wake development has been analyzed in the region between 2% and 100% of the blade chord from the central blade trailing edge, aligned with the blade exit direction. Wake integral parameters, half-width and maximum velocity defects have been evaluated from the mean velocity distributions to quantify the modifications induced on the vane wake by the upstream wake. Moreover the thicknesses of the two wake shear layers have been considered separately in order to identify the effects of Reynolds number and incoming flow on the wake shape. The self-preserving state of the wake has been looked at, taking into account the different thicknesses of the two shear layers. The evaluation of the power density spectra of the velocity fluctuations allowed the study of the wake unsteady behavior, and the detection of the effects induced by the different operating conditions on the trailing edge vortex shedding.展开更多
The aim of this study is the characterization of the cylindrical "mixing layer resulting from the interaction of two coaxial swirling jets. The experimental part of this study was performed in a cylindrical water...The aim of this study is the characterization of the cylindrical "mixing layer resulting from the interaction of two coaxial swirling jets. The experimental part of this study was performed in a cylindrical water tunnel, permitting an independent rotation of two coaxial jets. The rotations are generated by means of 2×36 blades localized in two swirling chambers. As expected, the evolution of the main instability modes presents certain differences compared to the plane-mixing-layer case. Experimental results obtained by tomography showed the existence of vortex rings and streamwise vortex pairs in the near field region. This method also permitted the observation of the evolution and interaction of different modes. PIV velocity measurements realized in the meridian plans and the plans perpendicular to the jet axis show that rotation distorts the typical top-hat axial velocity profile. The transition of the axial velocity profile from jet-like into wake-like is also observed.展开更多
The NCEP/NCAR R1 reanalysis data are employed to investigate the impact of forced and inertial instability in the lower troposphere over the Arabian Sea on the onset process of Indian summer monsoon(ISM),and to reveal...The NCEP/NCAR R1 reanalysis data are employed to investigate the impact of forced and inertial instability in the lower troposphere over the Arabian Sea on the onset process of Indian summer monsoon(ISM),and to reveal the important role of zonal advection of zonal geostrophic momentum played in the forced unstable convection.Results show that during the ISM onset the zero absolute vorticity contour(??=0)shifts northward due to the strong cross-equatorial pressure gradient in the lower troposphere over southern Arabian Sea.Thus a region with negative absolute vorticity is generated near the equator in the northern hemisphere,manifesting the evident free inertial instability.When a southerly passes through this region,under the influence of friction a lower convergence that facilitates the convection flourishing at the lower latitudes appears to the north of zero absolute vorticity contour.However,owing to such a traditional inertial instability,the convection is confined near the equator which does not have direct influence on the ISM onset.On the contrary in the region to the north of the zero absolute vorticity contour and to the south of the low pressure center near the surface,although the atmosphere there is inertially stable,the lower westerly jet can develop and bring on the apparent zonal advection of zonal geostrophic momentum.Both theoretical study and diagnosing analysis present that such a zonal advection of geostrophic momentum is closely associated with the zonal asymmetric distribution of meridional land-sea thermal contrast,which induces a convergence center near and further north of the westerly jet in the lower troposphere over the southwestern coast of the Indian Peninsula,providing a favorable lower circulation for the ISM onset.It illustrates that the development of convection over the Arabian Sea in late spring and early summer is not only due to the frictional inertial instability but also strongly affected by the zonal asymmetric distribution of land-sea thermal contrast.Moreover,before the ISM onset due to the eastward development of the South Asian High(SAH)in the upper troposphere,high potential vorticity is transported to the region over the Arabian Sea.Then a local trumpet-shaped stream field is generated to cause the evident upper divergence-pumping effect which favors the ISM onset.When the upper divergence is vertically coupled with the lower convergence resulted from the aforementioned forced unstable convection development near the southwestern coast of Indian Peninsula,the atmospheric baroclinic unstable development is stimulated and the ISM onset is triggered.展开更多
文摘The experiments of primary and secondary instabilities with controlled excitation are carried out on a swept flat plate to study the process leading to the final breakdown of laminar flow. Two types of high frequency secondary instabilities are identified. The most amplified mode is centered about the inflection point of the crosswise profile of the boundary layer and is interpreted as inflectional instability, the other occurs in the one third of the boundary layer from the wall. The high frequency disturbances are highly amplified but they also saturate similarly to the primary and nonlinearly generated disturbances. Their main effect in the final breakdown seems interact with the disturbances is developed and thus widens the frequency spectrum to turbulent state.
基金Supported by the National Natural Science Foundation of China (No.50521604) and Shanghai Jiao Tong University Young Teacher Foundation.
文摘A viscous Kelvin-Helmholtz criterion of the interfacial wave instability is proposed in this paper based on the linear stability analysis of a transient one-dimensional two-fluid model. In thismodel, the pressure is evaluated using the local momentum balance rather than the hydrostatic approximation. The criterion predicts well the stability limit of stratified flow in horizontal and nearly horizontal pipes. The experimental and theoretical investigation on the effect of pipe inclination on the interfacial instability are carded out. It is found that the critical liquid height at the onset of interfacial wave instability is insensitive to the pipe inclination. However, the pipe inclination significantly affects critical superficial liquid velocity and wave velocity especially lor low gas velocities.
文摘Most image reconstruction algorithms developed for electrical capacitance tomography (ECT) can only reconstruct qualitative images. Stabled quantitative image reconstruction is necessary for many applications. To get stable ECT image, the authors constructed a compressive operator and developed a new iterative algorithm, which can overcome the semi-convergence occurring in the Landweber iteration reconstruction technique. Experimental results showed that the stability and quality of re- constructed images are improved significantly.
基金supported by the National Natural Science Foundation of China[grant number 11472272]the National Key R&D Plan[grant number 2016YFC0208802]
文摘Nocturnal temperature is crucial in stability determination, as well as parameterization in numerical models. In the present research, data from four tall towers are used to investigate the temperature oscillations observed in the stable boundary layer, including the 307-m Boseong Tower on the southern coast of Korea, a 100-m tower in a grassland area of northern China, a 70-m tower in a desert area in northwestern China, and the 32S-m Beijing Tower. Large temperature oscillations, with amplitudes of about 2℃ and periods of several minutes to tens of minutes, are detected. Using the empirical mode decomposition method working as a high-pass filter, the oscillations of temperature are extracted from the original non-stationary and nonlinear temperature data. The daily variations and vertical distribution of the temperature oscillations are discussed. Generally strong temperature oscillations are found at tens of meters high during nighttime in the coastal area, in the steppe, and in the desert, when stable conditions have formed. Much weaker nocturnal temperature oscillations are observed in Beijing, where the large heat capacity of buildings and streets and artificial heat sources prevent the boundary layer conditions from becoming stable. Static stability expressed by the Brunt-Vaisala frequency is found to be an important factor for such temperature oscillation events, which is worthy of model parameterization.
基金Supported by the National Natural Science Foundation of China (51176181)the National Basic Research Program of China (2012CB719704)
文摘A numerical study on premixed methane/ethylene/air flames with various ethylene fractions and equivalence ratios was conducted at room temperature and atmospheric pressure. The effects of ethylene addition on laminar burning velocity, flame structure and flame stability under the condition of lean burning were investigated. The results show that the laminar burning velocity increases with ethylene fraction, especially at a large equivalence ratio. More ethylene addition gives rise to higher concentrations of H, O and OH radicals in the flame, which significantly promotes chemical reactions, and a linear correlation exists between the laminar burning velocity and the maximum H + OH concentration in the reaction zone. With the increase of ethylene fraction, the adiabatic flame temperature is raised, while the inner layer temperature becomes lower, contributing to the enhancement of combustion. Markstein length and Markstein number, representative of the flame stability, increase as more ethylene is added, indicating the tendency of flame stability to improve with ethylene addition.
文摘The data of modified isochronal testing of gas well is just used to calculate gas well deliverability. Fully utilizing well test data make it possible to obtain formation parameters, such as gas well deliverability, effective permeability and skin factor at the same time. Based on transient flow theory, the pressure drawdown equation of gas unsteady seepage can be deducted. One simulated case is used to illustrate the applicability of the proposed method. The result of analyzed case shows that the proposed method can provide accurate estimate of formation permeability and skin factor compared with the method of Homer curves.
文摘In multi-hop cognitive radio networks ( CRNs), the heterogeneous environment increases the complexity of common control channel (CCC) formation and routing protocol design. In this paper, we consider the on-demand routing protocol transmits over CCC. However, since CR transceivers (secondary users) have different available channel sets and it must vacate the licensed channel when a primary user arrives, forming a CCC becomes a main challenge in routing protocol design for CRNs. Our proposed CCC formation algorithm is based on a spectrum-tree structure, which consists of all cluster heads in CRNs. The cluster heads are with smaller moving range and lower mobility, and also act as a router in the whole network which maintains information of its cluster. Hence, a route is constituted in part by a set of cluster-head identity (ID) numbers, which represent the spe- cific cluster heads the path traverses, and in part by a set of member nodes ID numbers, which are included in the clusters containing the source and destination nodes. Due to high mobility and dynamic available spectrum, we define the stability parameters of path as two parts. One stability parameter is mobility factor, which represents the probability that a pairwise node can keep in communication range for the next flow transmission. The another stability parameter is spectrum opportunistic (SOP) factor, which represents the probability that a pairwise links can obtain the assigned spectrum band for the next flow transmission. Simulation results show that CCC formation algorithm produces a high probability of CCC formation, and the proposed routing protocol performs better than typical routing protocols.
基金supported by the Key Research Program of the Chinese Academy of Sciences(Grant No.KZZD-EW-05-01)the National Natural Science Foundation of China(Grant Nos.40921160379,40930950 and 40775031)
文摘A new invariant, the second order potential vorticity(SPV), is derived in this paper. SPV is the dot product of vorticity and the potential vorticity(PV) gradient, and is proven conservative for a compressible, adiabatic and frictionless atmosphere. Research shows that the new invariant may be used to indicate the evolution of PV, because SPV includes all the information that determines PV evolution: the wind field, and the PV gradient. Furthermore, SPV is capable of diagnosing heavy precipitation because of the strong signals it presents in areas of heavy rainfall. SPV also shows great potential as a comprehensive conserved quantity for indicating the dynamical tropopause and baroclinic instability.
文摘The present paper reports the results of a detailed experimental study aimed at investigating the dynamics of a laminar separation bubble, from the origin of separation up to the breakdown to turbulence of the large scale co- herent structures generated as a consequence of the Kelvin-Helmholtz instability process. Measurements have been performed along a fiat plate installed within a double contoured test section, designed to produce an adverse pressure gradient typical of Ultra-High-Lift turbine blade profiles, which induces the formation of a laminar separation bubble at low Reynolds number condition. Measurements have been carried out by means of comple- mentary techniques: hot-wire (HW) anemometry, Laser Doppler Velocirnetry (LDV) and Particle Image Veloci- metry (PIV). The high accuracy 2-dimensional LDV results allow investigating reverse flow magnitude and both Reynolds normal and shear stress distributions along the separated flow region, while the high frequency response of the HW anemometer allows analyzing the amplification process of flow oscillations induced by instability mechanisms. PIV results complement the flow field analysis providing information on the generation and evolu- tion of the large scale coherent structures shed as a consequence of the separated shear layer roll-up, through in- stantaneous velocity vector maps. The simultaneous analysis of the data obtained by means of the different meas- uring techniques allows an in depth view of the instability mechanisms involved in the transition/reattachrnent processes of the separated shear layer.
基金supported by the National Nature Science Foundation of China (Grant Nos. 41275023, 91537212 & 410210040)
文摘Turbulence data(2008–2012) from a 325 m meteorological tower in Beijing, which consisted of three layers(47,140, and 280 m), was used to analyze the vertical distribution characteristics of turbulent transfer over Beijing city according to similarity theory. The conclusions were as follows.(1) Normalized standard deviations of wind speeds/ui * were plotted as a function only of a local stability parameter. The values under near-neutral conditions were 2.15, 1.61, and 1.19 at 47 m, 2.39, 1.75,and 1.21 at 140 m, and 2.51, 1.77, and 1.30 at 280 m, showing a clear increase with height. The normalized standard deviation of wind components fitted the 1/3 law under unstable stratification conditions and decreased with height under both stable and unstable conditions.(2) The normalized standard deviation of temperature fitted the.1/3 law in the free convection limit, but was quite scattered with different characteristics under near-neutral conditions. The normalized standard deviations of humidity and the CO2 concentration fitted the.1/3 law under unstable conditions, and remained constant under near-neutral and stable stratification. The normalized standard deviation of scalars, i.e., temperature, humidity, and CO2 concentration, all increased with height.(3) Compared with momentum, and the water vapor and CO2 concentrations, the turbulence correlation coefficient for heat was smaller under near-neutral conditions, but larger under both stable and unstable conditions. A dissimilarity between heat, and the water vapor and CO2 concentrations was observed in urban areas. The relative correlation coefficients between heat and each of momentum, humidity, and CO2 concentration(|rwT/ruw|, |rwT/rwc| and |rwT/ruq|) in the lower layers were always larger than in higher layers, except for the relative correlation coefficient between heat and humidity in an unstable stratification. Therefore, the ratio between heat and each of momentum, humidity, and CO2 concentration decreased with height.
文摘An experimental investigation on the near and far wake of a cascade of high-lift low-pressure turbine blades subjected to boundary layer separation over the suction side surface has been carried out, under steady and unsteady inflows. Two Reynolds number conditions, representative of take-off/landing and cruise operating conditions of the real engine, have been tested. The effect of upstream wake-boundary layer interaction on the wake shed from the profile has been investigated in a three-blade large-scale linear turbine cascade. The comparison between the wakes shed under steady and unsteady inflows has been performed through the analysis of mean velocity and Reynolds stress components measured at midspan of the central blade by means of a two-component crossed miniature hot-wire probe. The wake development has been analyzed in the region between 2% and 100% of the blade chord from the central blade trailing edge, aligned with the blade exit direction. Wake integral parameters, half-width and maximum velocity defects have been evaluated from the mean velocity distributions to quantify the modifications induced on the vane wake by the upstream wake. Moreover the thicknesses of the two wake shear layers have been considered separately in order to identify the effects of Reynolds number and incoming flow on the wake shape. The self-preserving state of the wake has been looked at, taking into account the different thicknesses of the two shear layers. The evaluation of the power density spectra of the velocity fluctuations allowed the study of the wake unsteady behavior, and the detection of the effects induced by the different operating conditions on the trailing edge vortex shedding.
文摘The aim of this study is the characterization of the cylindrical "mixing layer resulting from the interaction of two coaxial swirling jets. The experimental part of this study was performed in a cylindrical water tunnel, permitting an independent rotation of two coaxial jets. The rotations are generated by means of 2×36 blades localized in two swirling chambers. As expected, the evolution of the main instability modes presents certain differences compared to the plane-mixing-layer case. Experimental results obtained by tomography showed the existence of vortex rings and streamwise vortex pairs in the near field region. This method also permitted the observation of the evolution and interaction of different modes. PIV velocity measurements realized in the meridian plans and the plans perpendicular to the jet axis show that rotation distorts the typical top-hat axial velocity profile. The transition of the axial velocity profile from jet-like into wake-like is also observed.
基金supported jointly by the CAS Programme (Grant No. XDA11010402)the National Basic Research Program of China (Grant Nos. 2010CB950403, 2012CB417203)+1 种基金the National Natural Science Foundation of China (Grant No. 41275088)the Project founded by China Postdoctoral Science Foundation.
文摘The NCEP/NCAR R1 reanalysis data are employed to investigate the impact of forced and inertial instability in the lower troposphere over the Arabian Sea on the onset process of Indian summer monsoon(ISM),and to reveal the important role of zonal advection of zonal geostrophic momentum played in the forced unstable convection.Results show that during the ISM onset the zero absolute vorticity contour(??=0)shifts northward due to the strong cross-equatorial pressure gradient in the lower troposphere over southern Arabian Sea.Thus a region with negative absolute vorticity is generated near the equator in the northern hemisphere,manifesting the evident free inertial instability.When a southerly passes through this region,under the influence of friction a lower convergence that facilitates the convection flourishing at the lower latitudes appears to the north of zero absolute vorticity contour.However,owing to such a traditional inertial instability,the convection is confined near the equator which does not have direct influence on the ISM onset.On the contrary in the region to the north of the zero absolute vorticity contour and to the south of the low pressure center near the surface,although the atmosphere there is inertially stable,the lower westerly jet can develop and bring on the apparent zonal advection of zonal geostrophic momentum.Both theoretical study and diagnosing analysis present that such a zonal advection of geostrophic momentum is closely associated with the zonal asymmetric distribution of meridional land-sea thermal contrast,which induces a convergence center near and further north of the westerly jet in the lower troposphere over the southwestern coast of the Indian Peninsula,providing a favorable lower circulation for the ISM onset.It illustrates that the development of convection over the Arabian Sea in late spring and early summer is not only due to the frictional inertial instability but also strongly affected by the zonal asymmetric distribution of land-sea thermal contrast.Moreover,before the ISM onset due to the eastward development of the South Asian High(SAH)in the upper troposphere,high potential vorticity is transported to the region over the Arabian Sea.Then a local trumpet-shaped stream field is generated to cause the evident upper divergence-pumping effect which favors the ISM onset.When the upper divergence is vertically coupled with the lower convergence resulted from the aforementioned forced unstable convection development near the southwestern coast of Indian Peninsula,the atmospheric baroclinic unstable development is stimulated and the ISM onset is triggered.