In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic senso...In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.展开更多
Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luosha...Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.展开更多
In the framework of the STATIMON project, the complex research was done in which mathematical models of buildings' construction were created, defects identification method developed and also monitoring concept was co...In the framework of the STATIMON project, the complex research was done in which mathematical models of buildings' construction were created, defects identification method developed and also monitoring concept was composed according which automated monitoring system and software prototypes and structures were implemented. The strategic aim of the development of buildings' monitoring system was realized by mathematical and physical modelling of the faults (defects); analysis of characteristics sensitive to defects; selection of stability parameters and measurements; creation of automated system prototype; investigation of the methods applied for the monitoring system and diagnostics; development of software and separate elements of the system and approbation of the whole complex. Thorough evaluation of the technical state of the buildings numerical is executed using physical models and natural objects which support reliable state identification of the building and also helps to track changes.展开更多
Synchronized distributed measurements of mode parameters create a technical feasibility for development and implementing new technologies of control the mode stability and the admissibility of EPS (electric power sys...Synchronized distributed measurements of mode parameters create a technical feasibility for development and implementing new technologies of control the mode stability and the admissibility of EPS (electric power system) mode. Discussion will focus on different models obtained from data synchronized measurements for operational and automatic emergency control without EPS being totally controlled. According to the proposed technology, the generator's output power restrictions are determined in real-time by the terms a static stability using the generators' mode model as a multipole with connection nodes of generators' electromotive forces (the matrix of SMA (self and mutual admittances) of electromotive forces of generators). Potential applications of the technology are distribution network with the main substation and generators of commensurable capacity, and transmission network with large power plants (generators) distributed into the network. The one-level control system for all of generators with defining the generator's power limits relative to the main substation is implemented in the first case. In the second case, the two-level control system is brought in, based on the separation of large and small generation motion. The results of the method and technology efficiency verification are shown in the paper, by both computer simulations of the power system modes and its physical model.展开更多
基金the financial support provided by the National Basic Research Program of China (973 Program) (Grant No. 2011CB710605)the National Natural Science Foundation of China (Grant Nos. 41102174, 41302217)supported by the National Key Technology R&D Program of China (Grant No. 2012BAK10B05)
文摘In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.
文摘Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.
文摘In the framework of the STATIMON project, the complex research was done in which mathematical models of buildings' construction were created, defects identification method developed and also monitoring concept was composed according which automated monitoring system and software prototypes and structures were implemented. The strategic aim of the development of buildings' monitoring system was realized by mathematical and physical modelling of the faults (defects); analysis of characteristics sensitive to defects; selection of stability parameters and measurements; creation of automated system prototype; investigation of the methods applied for the monitoring system and diagnostics; development of software and separate elements of the system and approbation of the whole complex. Thorough evaluation of the technical state of the buildings numerical is executed using physical models and natural objects which support reliable state identification of the building and also helps to track changes.
文摘Synchronized distributed measurements of mode parameters create a technical feasibility for development and implementing new technologies of control the mode stability and the admissibility of EPS (electric power system) mode. Discussion will focus on different models obtained from data synchronized measurements for operational and automatic emergency control without EPS being totally controlled. According to the proposed technology, the generator's output power restrictions are determined in real-time by the terms a static stability using the generators' mode model as a multipole with connection nodes of generators' electromotive forces (the matrix of SMA (self and mutual admittances) of electromotive forces of generators). Potential applications of the technology are distribution network with the main substation and generators of commensurable capacity, and transmission network with large power plants (generators) distributed into the network. The one-level control system for all of generators with defining the generator's power limits relative to the main substation is implemented in the first case. In the second case, the two-level control system is brought in, based on the separation of large and small generation motion. The results of the method and technology efficiency verification are shown in the paper, by both computer simulations of the power system modes and its physical model.