To analyze the stability of nearly zero flattened dispersion, the dispersion deviations for three kinds of PCFs are calculated when the hole diameters deviate from their designed values. Numerical results show that ar...To analyze the stability of nearly zero flattened dispersion, the dispersion deviations for three kinds of PCFs are calculated when the hole diameters deviate from their designed values. Numerical results show that around the wavelength of 1.55 μm, the dispersion deviations of both the PCF with three-fold symmetry core and the PCF with hexagonal lattice are much less than that of the PCF with different hole diameters in different rings. Therefore, the stabilities of nearly zero flattened dispersion of the first two kinds of PCFs are much better than that of the last one. Considering the confinement loss, the PCF with three-fold symmetry core is preferable to practical use.展开更多
Actual slope stability problems have three-dimensional(3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach o...Actual slope stability problems have three-dimensional(3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach of limit analysis to conduct the evaluation of the stability of 3D slopes. A tangential technique is adopted to simplify the nonlinear failure criterion in the form of equivalent Mohr-Coulomb strength parameters. A class of 3D admissible rotational failure mechanisms is selected for soil slopes including three types of failure mechanisms: face failure, base failure, and toe failure. The upper-bound solutions and corresponding critical slip surfaces can be obtained by an efficient optimization method. The results indicate that the nonlinear parameters have significant influences on the assessment of slope stability, especially on the type of failure mechanism. The effects of nonlinear parameters appear to be pronounced for gentle slopes constrained to a narrow width. Compared with the solutions derived from plane-strain analysis, the 3D solutions are more sensitive to the values of nonlinear parameters.展开更多
On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict ...On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict the breakup characteristics of the power law film. The predicting formulas of stripping breakup length and diameter of ligament were put forward presently. Through high-speed photography and laser light sheet illumination,different breakup characteristics of flat power law film under different conditions were derived. The characteristic dimension of breakup regimes were defined and extracted. The effects of several parameters(injection pressure,ambient pressure, nozzle structure and fluid property) on the stripping breakup length and spray angle were investigated. The results revealed that increasing both the velocity of liquid film and the ambient pressure facilitated the breakup of film, reduced the stripping breakup length and enlarged the spray angle in different extents. The comparison between theoretical and experimental results was conducted to validate the feasibility of the linear stability theory.展开更多
This study has developed an efficient method to achieve excellent thermal dimensional stability and desired dimensions of hollow polyester fiber. Firstly,the influence of thermal treatment temperate( 140-180 ℃) on th...This study has developed an efficient method to achieve excellent thermal dimensional stability and desired dimensions of hollow polyester fiber. Firstly,the influence of thermal treatment temperate( 140-180 ℃) on the degree of shrinkage of fiber was investigated. The influence was also analyzed with a 2nd heating to simulate the application situation. It was discovered that the heat treatment at a temperature which was above the application temperature( 2nd heating) would efficiently remove the internal stress in the fiber and improve the thermal dimensional stability.Secondly,the impact of heat treatment temperature on the fiber diameter and the degree of hollowness were studied. The results implied that with a fixed fiber length, higher treatment temperature led to thinner fiber and a lower degree of hollowness.Last but not least,key parameters that could further influence the fiber dimensions were investigated. The results suggested that the fiber diameters and the degree of hollowness could be further controlled by tuning the drawing speed,the spinning meter pump output and cooling status while the spinneret parameters were fixed.展开更多
The stability of the centrifugal pump has not been well revealed because of the complexity of internal flow. To analyze the flow characteristics of a centrifugal pump operating at low capacity, methods of numerical si...The stability of the centrifugal pump has not been well revealed because of the complexity of internal flow. To analyze the flow characteristics of a centrifugal pump operating at low capacity, methods of numerical simulation and experimental research were adopted in this paper. Characteristics of the inner flow were obtained. Standard k-s turbulence models were used to calculate the inner flow of the pump under off-design conditions. The distri- bution of the energy gradient function K was obtained by three-dimensional numerical simulation at different flow rates. The relative velocity component was acquired from the absolute velocity obtained in particle image velocimetry. By comparing with experimental results, it was found that flow instability occurs at the position of maximum K. The flow stability reduces with an increasing flow rate. The research results provide a theoretical basis for the optimization design of a centrifugal pump.展开更多
文摘To analyze the stability of nearly zero flattened dispersion, the dispersion deviations for three kinds of PCFs are calculated when the hole diameters deviate from their designed values. Numerical results show that around the wavelength of 1.55 μm, the dispersion deviations of both the PCF with three-fold symmetry core and the PCF with hexagonal lattice are much less than that of the PCF with different hole diameters in different rings. Therefore, the stabilities of nearly zero flattened dispersion of the first two kinds of PCFs are much better than that of the last one. Considering the confinement loss, the PCF with three-fold symmetry core is preferable to practical use.
基金Project(201501035-03)supported by the Public Service Sector R&D Project of Ministry of Water Resource of ChinaProject(2015CB057901)supported by Basic Research Program of China+4 种基金Projects(51278382,51479050,51508160)supported by the National Natural Science Foundation of ChinaProject(B13024)supported by the 111 ProjectProjects(2014B06814,B15020060,2014B33414)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(YK913004)supported by the Open Foundation of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dam of the Ministry of Water Resources,ChinaProject(KYZZ_0143)supported by the Graduate Education Innovation Project of Jiangsu Province of China
文摘Actual slope stability problems have three-dimensional(3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach of limit analysis to conduct the evaluation of the stability of 3D slopes. A tangential technique is adopted to simplify the nonlinear failure criterion in the form of equivalent Mohr-Coulomb strength parameters. A class of 3D admissible rotational failure mechanisms is selected for soil slopes including three types of failure mechanisms: face failure, base failure, and toe failure. The upper-bound solutions and corresponding critical slip surfaces can be obtained by an efficient optimization method. The results indicate that the nonlinear parameters have significant influences on the assessment of slope stability, especially on the type of failure mechanism. The effects of nonlinear parameters appear to be pronounced for gentle slopes constrained to a narrow width. Compared with the solutions derived from plane-strain analysis, the 3D solutions are more sensitive to the values of nonlinear parameters.
基金Supported by the National Natural Science Foundation of China(11172205,11372219,51176137)
文摘On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict the breakup characteristics of the power law film. The predicting formulas of stripping breakup length and diameter of ligament were put forward presently. Through high-speed photography and laser light sheet illumination,different breakup characteristics of flat power law film under different conditions were derived. The characteristic dimension of breakup regimes were defined and extracted. The effects of several parameters(injection pressure,ambient pressure, nozzle structure and fluid property) on the stripping breakup length and spray angle were investigated. The results revealed that increasing both the velocity of liquid film and the ambient pressure facilitated the breakup of film, reduced the stripping breakup length and enlarged the spray angle in different extents. The comparison between theoretical and experimental results was conducted to validate the feasibility of the linear stability theory.
基金Innovation Fund Project of National Commercial Aircraft Manufacturing Engineering Research Center(No.SAM C14-JS-15-048)Natural Science Foundation of Shanghai,China(No.13ZR1400400)the Fundamental Research Funds for the Central Universities,China
文摘This study has developed an efficient method to achieve excellent thermal dimensional stability and desired dimensions of hollow polyester fiber. Firstly,the influence of thermal treatment temperate( 140-180 ℃) on the degree of shrinkage of fiber was investigated. The influence was also analyzed with a 2nd heating to simulate the application situation. It was discovered that the heat treatment at a temperature which was above the application temperature( 2nd heating) would efficiently remove the internal stress in the fiber and improve the thermal dimensional stability.Secondly,the impact of heat treatment temperature on the fiber diameter and the degree of hollowness were studied. The results implied that with a fixed fiber length, higher treatment temperature led to thinner fiber and a lower degree of hollowness.Last but not least,key parameters that could further influence the fiber dimensions were investigated. The results suggested that the fiber diameters and the degree of hollowness could be further controlled by tuning the drawing speed,the spinning meter pump output and cooling status while the spinneret parameters were fixed.
基金supported by Key Projects in the National Science & Technology Pillar Program (No. 2013 BAF05B01)Public Projects of Zhejiang Province (No. 2014C31116)+1 种基金521 Talent Project of Zhejiang Sci-Tech University, Fluid Engineering Innovation Team of Zhejiang Sci-Tech University (No. 11132932611309)National Natural Science Foundation of China (No. 51409233)
文摘The stability of the centrifugal pump has not been well revealed because of the complexity of internal flow. To analyze the flow characteristics of a centrifugal pump operating at low capacity, methods of numerical simulation and experimental research were adopted in this paper. Characteristics of the inner flow were obtained. Standard k-s turbulence models were used to calculate the inner flow of the pump under off-design conditions. The distri- bution of the energy gradient function K was obtained by three-dimensional numerical simulation at different flow rates. The relative velocity component was acquired from the absolute velocity obtained in particle image velocimetry. By comparing with experimental results, it was found that flow instability occurs at the position of maximum K. The flow stability reduces with an increasing flow rate. The research results provide a theoretical basis for the optimization design of a centrifugal pump.