Aim To improve the thermostability of vane absorbers while designing and manu- facturing. Methods Having considered the structural features of vane absorbers, measures that could reduce the force decay ratio of vane ...Aim To improve the thermostability of vane absorbers while designing and manu- facturing. Methods Having considered the structural features of vane absorbers, measures that could reduce the force decay ratio of vane absorbers were discussed. A kind of practical auto temperature compensation apparatus, whose theoretical basis had been discussed, was designed. Results Compared to the prototype vane absorber, this kind of apparatus could decrease force decay ratio sharply. Thus, the thermostability of vane absorbers was improved greatly The accuracy of theoretical analysis and the effectiveness and feasibility of the apparatus was proved by actual testing Conclusion changing vane absorber's configuration, its performance is improved.展开更多
This paper presents an adaptive friction compensation method based on LuGre model for large diameter electric-hydraulic proportional valves in which the valve core contains friction.A mathematic model of the electric-...This paper presents an adaptive friction compensation method based on LuGre model for large diameter electric-hydraulic proportional valves in which the valve core contains friction.A mathematic model of the electric-hydraulic proportional valve is established,and the friction characteristics are described based on the LuGre model.The global asymptotic stability of the control system with the adaptive friction compensation controller is guaranteed over Lyapunov theorem.The adaptive compensation of the friction on LuGre friction model is verified by simulation and experiment.The steady-state error is about [-4.23 × 10^(-5)m,5.91 × 10^(-5)m]and[-2.5 × 10^(-4)m,2.6 ×10^(-4) m] on simulation and experiment,the position tracking accuracy is higher,and the lag time of the main valve through the dead zone is shorter.The result proves that the adaptive friction compensation method can effectively compensate for the negative effects of nonlinear friction.展开更多
This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stabil...This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stability and damping effect of an on line power system. Both controller parameters has been optimized by using Ziegler-Nichols close loop tuning method. Both single phase and three phase (L-L) faults have been considered in the research. In this paper, a power system network is considered which is simulated in the phasor simulation method & the network is simulated in four steps; without SVC, With SVC but no externally controlled, SVC with PI controller & SVC with PD controller. Simulation result shows that without SVC, the system parameters become unstable during faults. When SVC is imposed in the network, then system parameters become stable. Again, when SVC is controlled externally by PI & PD controllers, then system parameters becomes stable in faster way then without controller. It has been observed that the SVC ratings are only 50 MVA with controllers and 200 MVA without controllers. So, SVC with PI & PD controllers are more effective to enhance the voltage stability and increases power transmission capacity of a power system. The power system oscillations are also reduced with controllers in compared to that of without controllers. So with both controllers the system performance is greatly enhanced.展开更多
文摘Aim To improve the thermostability of vane absorbers while designing and manu- facturing. Methods Having considered the structural features of vane absorbers, measures that could reduce the force decay ratio of vane absorbers were discussed. A kind of practical auto temperature compensation apparatus, whose theoretical basis had been discussed, was designed. Results Compared to the prototype vane absorber, this kind of apparatus could decrease force decay ratio sharply. Thus, the thermostability of vane absorbers was improved greatly The accuracy of theoretical analysis and the effectiveness and feasibility of the apparatus was proved by actual testing Conclusion changing vane absorber's configuration, its performance is improved.
文摘建立了采用相关波前探测算法(Correlation wave-front sensing algorithm,COR)的自适应光学(Adaptive Optics,AO)系统的数值模型,对准直光束大气传输自适应光学校正进行了数值模拟,分析了不同热晕强度条件下光子噪声和读出噪声对系统校正效果的影响,并与质心(Center of Gravity,COG)算法和阈值质心(Threshold Center of Gravity,TCOG)算法进行了对比。数值模拟结果表明,COR算法对噪声和热晕强度的变化具有更好的鲁棒性,可以提高夏克-哈特曼波前探测器(ShackHartmann Wave-front Sensor,SH-WFS)在低信噪比(Signal to Noise Ratio,SNR)条件下的波前探测精度,同时还可以较好地抑制噪声诱发的相位补偿不稳定性(Phase Compensation Instability,PCI),改善低信噪比条件下大气热晕校正的稳定性。
基金Supported by the National Key Basic Research Program of China(No.2014CB046405)Key Projects in the National Science&Technology Pillar Program during the Twelfth Five-year Plan of China(No.2014BAF02B00,2011BAF09B04)
文摘This paper presents an adaptive friction compensation method based on LuGre model for large diameter electric-hydraulic proportional valves in which the valve core contains friction.A mathematic model of the electric-hydraulic proportional valve is established,and the friction characteristics are described based on the LuGre model.The global asymptotic stability of the control system with the adaptive friction compensation controller is guaranteed over Lyapunov theorem.The adaptive compensation of the friction on LuGre friction model is verified by simulation and experiment.The steady-state error is about [-4.23 × 10^(-5)m,5.91 × 10^(-5)m]and[-2.5 × 10^(-4)m,2.6 ×10^(-4) m] on simulation and experiment,the position tracking accuracy is higher,and the lag time of the main valve through the dead zone is shorter.The result proves that the adaptive friction compensation method can effectively compensate for the negative effects of nonlinear friction.
文摘This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stability and damping effect of an on line power system. Both controller parameters has been optimized by using Ziegler-Nichols close loop tuning method. Both single phase and three phase (L-L) faults have been considered in the research. In this paper, a power system network is considered which is simulated in the phasor simulation method & the network is simulated in four steps; without SVC, With SVC but no externally controlled, SVC with PI controller & SVC with PD controller. Simulation result shows that without SVC, the system parameters become unstable during faults. When SVC is imposed in the network, then system parameters become stable. Again, when SVC is controlled externally by PI & PD controllers, then system parameters becomes stable in faster way then without controller. It has been observed that the SVC ratings are only 50 MVA with controllers and 200 MVA without controllers. So, SVC with PI & PD controllers are more effective to enhance the voltage stability and increases power transmission capacity of a power system. The power system oscillations are also reduced with controllers in compared to that of without controllers. So with both controllers the system performance is greatly enhanced.