At present,limit equilibrium method is often adopted in the design of reinforced earth retaining wall. Geotechnical engineers home and abroad have done a lot of work to improve the traditional calculation methods in r...At present,limit equilibrium method is often adopted in the design of reinforced earth retaining wall. Geotechnical engineers home and abroad have done a lot of work to improve the traditional calculation methods in recent years,while there are lots of defects. This paper first identifies the location of failure surface and safety factor through the finite element program of PLAXIS and then analyses the influencing factors of the stability of reinforced earth retaining wall with geogrid. The authors adopt strength reduction FEM (finite element method)in the design and stability analysis of reinforced earth retaining wall and have achieved some satisfying results. Without any assumptions,the new design method can automatically judge the failure mode of reinforced earth retaining wall,consider the influence of axial tensile stiffness of the reinforcement stripe on the stability of retaining wall,identify reasonable distance and length of the reinforcement stripe,and choose suitable parameters of reinforcement stripe,including strength,stiffness and pseudo-friction coefficient which makes the design optimal. It is proved through the calculation examples that this method is more reasonable,reliable and economical in the design of reinforced earth retaining wall.展开更多
The objective of this work is to obtain the seismic safety coefficient and fracture surface and proceed with the seismic safety evaluation for the rock mass or soil mass surrounding a tunnel,and the limitation of eval...The objective of this work is to obtain the seismic safety coefficient and fracture surface and proceed with the seismic safety evaluation for the rock mass or soil mass surrounding a tunnel,and the limitation of evaluating seismic stability is considered using the pseudo-static strength reduction.By using the finite element software ANSYS and the strength reduction method,new methods of seismic safety evaluation for the rock mass or soil mass surrounding a tunnel are put forward,such as the dynamic finite element static shear strength reduction method and dynamic finite element shear strength reduction method.In order to prove the feasibility of the proposed methods,the results of numerical examples are compared with that of the pseudo-static strength reduction method.The results show that 1) the two methods are both feasible,and the plastic zone first appears near the bottom corners; 2) the safety factor of new method Ⅱ is smaller than that of new method I but generally,and the difference is very small.Therefore,in order to ensure the safety of the structure,two new methods are proposed to evaluate the seismic stability of the rock mass or soil mass surrounding a tunnel.A theoretical basis is provided for the seismic stability of the rock mass or soil mass and the lining surrounding a tunnel and also provided for the engineering application.展开更多
The paper first analyzes the failure mechanism and mode of tunnel according to model experiments and mechanical calculation and then discusses the deficiency of taking the limit value of displacement around the tunnel...The paper first analyzes the failure mechanism and mode of tunnel according to model experiments and mechanical calculation and then discusses the deficiency of taking the limit value of displacement around the tunnel and the size of the plastic zone of surrounding rock as the criterion of stability. So the writers put forward the idea that the safety factor of surrounding rock calculated through strength reduction FEM(finit element method) should be regarded as the criterion of stability,which has strict mechanical basis and unified standard and would not be influenced by other factors. The paper also studies the safety factors of tunnel surrounding rock (safety factors of shear and tension failure) and lining and some methods of designing and calculating tunnels. At last,the writers take the loess tunnel for instance and show the design and calculation results of two-lane railway tunnel.展开更多
The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional...The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.展开更多
The factor of safety of mechanically stabilized earth(MSE) structures can be analyzed either using limit equilibrium method(LEM) or strength reduction method(SRM) in finite element/difference method. In LEM, the stren...The factor of safety of mechanically stabilized earth(MSE) structures can be analyzed either using limit equilibrium method(LEM) or strength reduction method(SRM) in finite element/difference method. In LEM, the strengths of the reinforcement members and soils are reduced with the same factor. While using the SRM, only soil strength is reduced during the calculation of the factor of safety. This causes inconsistence in calculating the factor of safety of the MSE structures. To overcome this, an iteration method is proposed to consider the strength reduction of the reinforcements in SRM. The method is demonstrated by using PLAXIS, a finite element software. The results show that the factor of safety converges after a few iterations. The reduction of strength has different effects on the factor of safety depending on the properties of the reinforcements and the soil, and failure modes.展开更多
Based on a new DIY concept for software development, an automatic program-generating technology attached on a software system called as Finite Element Program Generator (FEPG) provides a platform of developing progr...Based on a new DIY concept for software development, an automatic program-generating technology attached on a software system called as Finite Element Program Generator (FEPG) provides a platform of developing programs, through which a scientific researcher can submit his special physico-mathematical problem to the system in a more direct and convenient way for solution. For solving flow and heat problems by using finite element method, the stabilization technologies and fraction-step methods are adopted to overcome the numerical difficul- ties caused mainly due to the dominated convection. A couple of benchmark problems are given in this paper as examples to illustrate the usage and the superiority of the automatic program generation technique, including the flow in a lid-driven cavity, the starting flow in a circular pipe, the natural convection in a square cavity, and the flow past a circular cylinder, etc. They are also shown as the verification of the algorithms.展开更多
This paper presents a low order stabilized hybrid quadrilateral finite element method for ReissnerMindlin plates based on Hellinger-Reissner variational principle,which includes variables of displacements,shear stress...This paper presents a low order stabilized hybrid quadrilateral finite element method for ReissnerMindlin plates based on Hellinger-Reissner variational principle,which includes variables of displacements,shear stresses and bending moments.The approach uses continuous piecewise isoparametric bilinear interpolations for the approximations of the transverse displacement and rotation.The stabilization achieved by adding a stabilization term of least-squares to the original hybrid scheme,allows independent approximations of the stresses and moments.The stress approximation adopts a piecewise independent 4-parameter mode satisfying an accuracy-enhanced condition.The approximation of moments employs a piecewise-independent 5-parameter mode.This method can be viewed as a stabilized version of the hybrid finite element scheme proposed in [Carstensen C,Xie X,Yu G,et al.A priori and a posteriori analysis for a locking-free low order quadrilateral hybrid finite element for Reissner-Mindlin plates.Comput Methods Appl Mech Engrg,2011,200:1161-1175],where the approximations of stresses and moments are required to satisfy an equilibrium criterion.A priori error analysis shows that the method is uniform with respect to the plate thickness t.Numerical experiments confirm the theoretical results.展开更多
In this paper,we analyze the explicit Runge-Kutta discontinuous Galerkin(RKDG)methods for the semilinear hyperbolic system of a correlated random walk model describing movement of animals and cells in biology.The RKDG...In this paper,we analyze the explicit Runge-Kutta discontinuous Galerkin(RKDG)methods for the semilinear hyperbolic system of a correlated random walk model describing movement of animals and cells in biology.The RKDG methods use a third order explicit total-variation-diminishing Runge-Kutta(TVDRK3)time discretization and upwinding numerical fluxes.By using the energy method,under a standard CourantFriedrichs-Lewy(CFL)condition,we obtain L2stability for general solutions and a priori error estimates when the solutions are smooth enough.The theoretical results are proved for piecewise polynomials with any degree k 1.Finally,since the solutions to this system are non-negative,we discuss a positivity-preserving limiter to preserve positivity without compromising accuracy.Numerical results are provided to demonstrate these RKDG methods.展开更多
基金This research was funded by the Constructional Science and Technology Project of West Transportation,Ministry of Transport of People’s Republic of China(2003-318-799-17)
文摘At present,limit equilibrium method is often adopted in the design of reinforced earth retaining wall. Geotechnical engineers home and abroad have done a lot of work to improve the traditional calculation methods in recent years,while there are lots of defects. This paper first identifies the location of failure surface and safety factor through the finite element program of PLAXIS and then analyses the influencing factors of the stability of reinforced earth retaining wall with geogrid. The authors adopt strength reduction FEM (finite element method)in the design and stability analysis of reinforced earth retaining wall and have achieved some satisfying results. Without any assumptions,the new design method can automatically judge the failure mode of reinforced earth retaining wall,consider the influence of axial tensile stiffness of the reinforcement stripe on the stability of retaining wall,identify reasonable distance and length of the reinforcement stripe,and choose suitable parameters of reinforcement stripe,including strength,stiffness and pseudo-friction coefficient which makes the design optimal. It is proved through the calculation examples that this method is more reasonable,reliable and economical in the design of reinforced earth retaining wall.
基金Project(2011CB013600) supported by State Key Program for Basic Research of ChinaProject(20136201110003) supported by the Education Ministry Doctoral Tutor Foundation of China+1 种基金Project(51368039) supported by the National Natural Science Foundation of ChinaProject(2013-4-94) supported by the Program of Science and Technology Research in Lanzhou City,China
文摘The objective of this work is to obtain the seismic safety coefficient and fracture surface and proceed with the seismic safety evaluation for the rock mass or soil mass surrounding a tunnel,and the limitation of evaluating seismic stability is considered using the pseudo-static strength reduction.By using the finite element software ANSYS and the strength reduction method,new methods of seismic safety evaluation for the rock mass or soil mass surrounding a tunnel are put forward,such as the dynamic finite element static shear strength reduction method and dynamic finite element shear strength reduction method.In order to prove the feasibility of the proposed methods,the results of numerical examples are compared with that of the pseudo-static strength reduction method.The results show that 1) the two methods are both feasible,and the plastic zone first appears near the bottom corners; 2) the safety factor of new method Ⅱ is smaller than that of new method I but generally,and the difference is very small.Therefore,in order to ensure the safety of the structure,two new methods are proposed to evaluate the seismic stability of the rock mass or soil mass surrounding a tunnel.A theoretical basis is provided for the seismic stability of the rock mass or soil mass and the lining surrounding a tunnel and also provided for the engineering application.
基金This research was funded by the National Project"973"(GrantNo. 2010CB732100)NSF of Chongqing (Grant No. CSTC2009BC0002)
文摘The paper first analyzes the failure mechanism and mode of tunnel according to model experiments and mechanical calculation and then discusses the deficiency of taking the limit value of displacement around the tunnel and the size of the plastic zone of surrounding rock as the criterion of stability. So the writers put forward the idea that the safety factor of surrounding rock calculated through strength reduction FEM(finit element method) should be regarded as the criterion of stability,which has strict mechanical basis and unified standard and would not be influenced by other factors. The paper also studies the safety factors of tunnel surrounding rock (safety factors of shear and tension failure) and lining and some methods of designing and calculating tunnels. At last,the writers take the loess tunnel for instance and show the design and calculation results of two-lane railway tunnel.
基金Project(51479097)supported by the National Natural Science Foundation of ChinaProject(2013-KY-2)supported by State Key Laboratory of Hydroscience and Hydraulic Engineering,China
文摘The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.
基金Project(41072200)supported by the National Natural Science Foundation of ChinaProject(14PJD032)supported by the Shanghai Pujiang Program,China
文摘The factor of safety of mechanically stabilized earth(MSE) structures can be analyzed either using limit equilibrium method(LEM) or strength reduction method(SRM) in finite element/difference method. In LEM, the strengths of the reinforcement members and soils are reduced with the same factor. While using the SRM, only soil strength is reduced during the calculation of the factor of safety. This causes inconsistence in calculating the factor of safety of the MSE structures. To overcome this, an iteration method is proposed to consider the strength reduction of the reinforcements in SRM. The method is demonstrated by using PLAXIS, a finite element software. The results show that the factor of safety converges after a few iterations. The reduction of strength has different effects on the factor of safety depending on the properties of the reinforcements and the soil, and failure modes.
文摘Based on a new DIY concept for software development, an automatic program-generating technology attached on a software system called as Finite Element Program Generator (FEPG) provides a platform of developing programs, through which a scientific researcher can submit his special physico-mathematical problem to the system in a more direct and convenient way for solution. For solving flow and heat problems by using finite element method, the stabilization technologies and fraction-step methods are adopted to overcome the numerical difficul- ties caused mainly due to the dominated convection. A couple of benchmark problems are given in this paper as examples to illustrate the usage and the superiority of the automatic program generation technique, including the flow in a lid-driven cavity, the starting flow in a circular pipe, the natural convection in a square cavity, and the flow past a circular cylinder, etc. They are also shown as the verification of the algorithms.
基金supported by National Natural Science Foundation of China (Grant Nos. 11171239 and 11226333)Scientific Research Foundation for the Returned Overseas Chinese Scholars and Foundation for Excellent Young Scholars of Sichuan University (Grant No. 2011SCU04B28)
文摘This paper presents a low order stabilized hybrid quadrilateral finite element method for ReissnerMindlin plates based on Hellinger-Reissner variational principle,which includes variables of displacements,shear stresses and bending moments.The approach uses continuous piecewise isoparametric bilinear interpolations for the approximations of the transverse displacement and rotation.The stabilization achieved by adding a stabilization term of least-squares to the original hybrid scheme,allows independent approximations of the stresses and moments.The stress approximation adopts a piecewise independent 4-parameter mode satisfying an accuracy-enhanced condition.The approximation of moments employs a piecewise-independent 5-parameter mode.This method can be viewed as a stabilized version of the hybrid finite element scheme proposed in [Carstensen C,Xie X,Yu G,et al.A priori and a posteriori analysis for a locking-free low order quadrilateral hybrid finite element for Reissner-Mindlin plates.Comput Methods Appl Mech Engrg,2011,200:1161-1175],where the approximations of stresses and moments are required to satisfy an equilibrium criterion.A priori error analysis shows that the method is uniform with respect to the plate thickness t.Numerical experiments confirm the theoretical results.
基金supported by the University of Science and Technology of China Special Grant for Postgraduate ResearchInnovation and Practice+5 种基金the Chinese Academy of Science Special Grant for Postgraduate ResearchInnovation and PracticeDepartment of Energy of USA(Grant No.DE-FG02-08ER25863)National Science Foundation of USA(Grant No.DMS-1112700)National Natural Science Foundation of China(Grant Nos.1107123491130016 and 91024025)
文摘In this paper,we analyze the explicit Runge-Kutta discontinuous Galerkin(RKDG)methods for the semilinear hyperbolic system of a correlated random walk model describing movement of animals and cells in biology.The RKDG methods use a third order explicit total-variation-diminishing Runge-Kutta(TVDRK3)time discretization and upwinding numerical fluxes.By using the energy method,under a standard CourantFriedrichs-Lewy(CFL)condition,we obtain L2stability for general solutions and a priori error estimates when the solutions are smooth enough.The theoretical results are proved for piecewise polynomials with any degree k 1.Finally,since the solutions to this system are non-negative,we discuss a positivity-preserving limiter to preserve positivity without compromising accuracy.Numerical results are provided to demonstrate these RKDG methods.