Objective To investigate the main proteinases responsible for CD16b shedding under different stimulators. Methods HEK293 cell line stably expressing CD16b was constructed by lentivirus system. The cell line was then ...Objective To investigate the main proteinases responsible for CD16b shedding under different stimulators. Methods HEK293 cell line stably expressing CD16b was constructed by lentivirus system. The cell line was then overexpressed with a disintegrin and metalloproteinase 10 (ADAM10) or ADAM17, sup- pressed with short hairpin RNA of ADAM10 or ADAM I 7, and reconstituted with ADAM 10 or ADAM17, respectively. After each treatment, the cell line was stimulated with ionomycin or phorbol 12-myristate- 13-acetate (PMA) for 12 hours. The soluble CD 16b released from cell membrane was detected by immuno- precipition and immunoblot. Quantitation was then implemented to compare the amount of soluble CD 16b in cell supernatant after stimulation. Results HEK293 cell line stably expressing CD16b was successfully established. When CDI6b ex- pressing cell line was overexpressed with ADAM 10, shedding of CD 16b was increased after stimulation with ionomycin but not PMA; when the cell line overexpressed with ADAM I7, shedding of CDI6b was increased after stimulation with PMA but not ionomycin. Similarly, when ADAM10 was suppressed by short hairpin RNA, CD 16b shedding was decreased after stimulation with ionomycin; when ADAM 17 was suppressed by short hairpin RNA, CD16b shedding was decreased after stimulation with PMA. The shedding of CD16b was increased again when CD16b expressing cell line was reconstituted with ADAM10 and stimulated by ionomycin or reconstituted with ADAM 17 and stimulated by PMA. Conclusions Both ADAM10 and ADAM17 could shed CD16b, but they possess differed prefer- ences. ADAM10 is the main sheddase under stimulation of ionomycin, while ADAM17 is the main sheddase under stimulation of PMA.展开更多
To acquire a knowledge of the stress-strain state in the process of mining beforehand, a numerical method was used to simulate the stoping process of access mechanized panel mining in No. 3 ore-body of Tonglushan mine...To acquire a knowledge of the stress-strain state in the process of mining beforehand, a numerical method was used to simulate the stoping process of access mechanized panel mining in No. 3 ore-body of Tonglushan mine; and for the sake of obtaining better stability, the optimal panel dimension and access stoping sequence were researched. The results show that the integral stability of the mechanized panel of No. 3 ore-body is passable in the process of winning at full level height; the stability of panel tends to be worse gradually with continuous increasing of panel width; and the better width of access panel in No.3 ore-body is less than 52 m. It is indicated that 3D elasto-plastic finite element method can make a satisfactory study of numerical simulation on the panel stability and its structural dimension in the test for the upward access mechanized-panel mining. The results of the theoretical calculation and analysis accord with the actual situation from the field ground pressure monitoring.展开更多
Bodies freely falling in steady water or air are common scenes encountered in various scientific and engineering fields, including the flapping flight of birds and the reentry of a space shuttle. In this work, the fre...Bodies freely falling in steady water or air are common scenes encountered in various scientific and engineering fields, including the flapping flight of birds and the reentry of a space shuttle. In this work, the freely falling annular thin disks with small dimensionless moments of inertia f and Reynolds number Re are investigated experimentally in a water tank. We use stereo- scopic vision to record the position and orientation of the disks. The flow structure behind the disks is studied by applying fluorescent dye visualization and PIV method. Varying the geometry dimensionless parameter (the inner to outer diameter ratio η and I*) of the disks reveals two new falling patterns. When ηcritl=0.6〈η〈ηcrit2=0.8, the disks show a random lateral vibration while falling. For high ηcrit2〉0.8, the circular vortex loops shed frequently from the disk, which causes a lengthways vibration superimposed onto straight vertical motion. We also observe another two falling patterns reported previously: hula-hoop and helical motion. By comparing the wake structure of the two motions, we find that the vortex layer twists more violently in the hula-hoop motion, which is the reason for the different trajectory between them. Further research on flow field reveals that the torque on the disk that causes the vibration is due to the formation, elongation and shedding of the vortex.展开更多
The so-called blisks,i.e.integrally bladed disks,are characterized by very low viscous material damping and make the flutter prediction much more critical.In that framework,a two-dimensional numerical study of a space...The so-called blisks,i.e.integrally bladed disks,are characterized by very low viscous material damping and make the flutter prediction much more critical.In that framework,a two-dimensional numerical study of a space turbine blisk featuring complex deformation of blades and high eigenfrequency(>40kHz)is performed.The simulations are based on unsteady Reynolds Averaged Navier Stokes computations linearized in the frequency domain and consist in the superposition of an unsteady linear(in time)pressure field,generated by a harmonic perturbation,upon a steady nonlinear(in space)flow.The aerodynamic damping coefficient is calculated over a range of nodal diameters,and the blades are predicted aeroelastically stable.However,violent changes occur and are rather critical since sudden and large deviations in stability appear.In that context,the nature of the waves propagating from the cascade are evaluated.Such an approach provides fundamental knowledge about the perturbations which can either propagate to the far-field(cut-on mode)or decay(cut-off mode).It is expected that the ability of the flow to damp or to amplify the blade motion is strongly affected by the way unsteady perturbations are transferred from the cascade to the far-field.The nature of the waves are first assessed from the aforementioned linearized results,then they are evaluated analytically and finally compared.A good agreement is found despite the strong assumptions of the analytical model.The results show a clear correlation between the cut-on/cut-off conditions and stability.The least stable configuration corresponds to cut-off mode at the inlet and no wave at the outlet.Without outgoing waves from the cascade,the blade is prone to be less stable:the energy from the blades vibration is necessarily dissipated or sent out by the cascade.展开更多
In this article,the random walking method is used to solve the steady linear convection-diffusion equation(CDE)with disc boundary condition.The integral solution corresponding to the random walking method is deduced a...In this article,the random walking method is used to solve the steady linear convection-diffusion equation(CDE)with disc boundary condition.The integral solution corresponding to the random walking method is deduced and the relationship between the diffusion coefficient of CDE and the intensity of the random diffusion motion is obtained.The random number generator for arbitrary axisymmetric disc boundary is deduced through the polynomial fitting and inverse transform sampling method.The proposed method is tested through two numerical cases.The results show that the random walking method can solve the steady linear CDE effectively.The influence of the parameters on the results is also studied.It is found that the error of the solution can be decreased by increasing the particle releasing rate and the total walking time.展开更多
基金Supported by the National Natural Science Foundation of China (30872287)
文摘Objective To investigate the main proteinases responsible for CD16b shedding under different stimulators. Methods HEK293 cell line stably expressing CD16b was constructed by lentivirus system. The cell line was then overexpressed with a disintegrin and metalloproteinase 10 (ADAM10) or ADAM17, sup- pressed with short hairpin RNA of ADAM10 or ADAM I 7, and reconstituted with ADAM 10 or ADAM17, respectively. After each treatment, the cell line was stimulated with ionomycin or phorbol 12-myristate- 13-acetate (PMA) for 12 hours. The soluble CD 16b released from cell membrane was detected by immuno- precipition and immunoblot. Quantitation was then implemented to compare the amount of soluble CD 16b in cell supernatant after stimulation. Results HEK293 cell line stably expressing CD16b was successfully established. When CDI6b ex- pressing cell line was overexpressed with ADAM 10, shedding of CD 16b was increased after stimulation with ionomycin but not PMA; when the cell line overexpressed with ADAM I7, shedding of CDI6b was increased after stimulation with PMA but not ionomycin. Similarly, when ADAM10 was suppressed by short hairpin RNA, CD 16b shedding was decreased after stimulation with ionomycin; when ADAM 17 was suppressed by short hairpin RNA, CD16b shedding was decreased after stimulation with PMA. The shedding of CD16b was increased again when CD16b expressing cell line was reconstituted with ADAM10 and stimulated by ionomycin or reconstituted with ADAM 17 and stimulated by PMA. Conclusions Both ADAM10 and ADAM17 could shed CD16b, but they possess differed prefer- ences. ADAM10 is the main sheddase under stimulation of ionomycin, while ADAM17 is the main sheddase under stimulation of PMA.
基金Project(2001BA901A09) supported by the Key Program of the 10th Five year Plan of China
文摘To acquire a knowledge of the stress-strain state in the process of mining beforehand, a numerical method was used to simulate the stoping process of access mechanized panel mining in No. 3 ore-body of Tonglushan mine; and for the sake of obtaining better stability, the optimal panel dimension and access stoping sequence were researched. The results show that the integral stability of the mechanized panel of No. 3 ore-body is passable in the process of winning at full level height; the stability of panel tends to be worse gradually with continuous increasing of panel width; and the better width of access panel in No.3 ore-body is less than 52 m. It is indicated that 3D elasto-plastic finite element method can make a satisfactory study of numerical simulation on the panel stability and its structural dimension in the test for the upward access mechanized-panel mining. The results of the theoretical calculation and analysis accord with the actual situation from the field ground pressure monitoring.
基金supported by the National Natural Science Foundation of China(Grant No.11672094)the Natural Science Foundation of Heilongjiang Province of China(Grant No.A201409)
文摘Bodies freely falling in steady water or air are common scenes encountered in various scientific and engineering fields, including the flapping flight of birds and the reentry of a space shuttle. In this work, the freely falling annular thin disks with small dimensionless moments of inertia f and Reynolds number Re are investigated experimentally in a water tank. We use stereo- scopic vision to record the position and orientation of the disks. The flow structure behind the disks is studied by applying fluorescent dye visualization and PIV method. Varying the geometry dimensionless parameter (the inner to outer diameter ratio η and I*) of the disks reveals two new falling patterns. When ηcritl=0.6〈η〈ηcrit2=0.8, the disks show a random lateral vibration while falling. For high ηcrit2〉0.8, the circular vortex loops shed frequently from the disk, which causes a lengthways vibration superimposed onto straight vertical motion. We also observe another two falling patterns reported previously: hula-hoop and helical motion. By comparing the wake structure of the two motions, we find that the vortex layer twists more violently in the hula-hoop motion, which is the reason for the different trajectory between them. Further research on flow field reveals that the torque on the disk that causes the vibration is due to the formation, elongation and shedding of the vortex.
基金the Centre National d'Etudes Spatiales (CNES) and Snecma for their financial supportthe Centre Informatique National de l'Enseignement Supérieur (CINES) for the computational resources,and the Agence Nationale de la Recherche(ANR) for sponsoring the project ANR-08-2009 CapCAO (parametrization-aided optimized aeroelastic design)
文摘The so-called blisks,i.e.integrally bladed disks,are characterized by very low viscous material damping and make the flutter prediction much more critical.In that framework,a two-dimensional numerical study of a space turbine blisk featuring complex deformation of blades and high eigenfrequency(>40kHz)is performed.The simulations are based on unsteady Reynolds Averaged Navier Stokes computations linearized in the frequency domain and consist in the superposition of an unsteady linear(in time)pressure field,generated by a harmonic perturbation,upon a steady nonlinear(in space)flow.The aerodynamic damping coefficient is calculated over a range of nodal diameters,and the blades are predicted aeroelastically stable.However,violent changes occur and are rather critical since sudden and large deviations in stability appear.In that context,the nature of the waves propagating from the cascade are evaluated.Such an approach provides fundamental knowledge about the perturbations which can either propagate to the far-field(cut-on mode)or decay(cut-off mode).It is expected that the ability of the flow to damp or to amplify the blade motion is strongly affected by the way unsteady perturbations are transferred from the cascade to the far-field.The nature of the waves are first assessed from the aforementioned linearized results,then they are evaluated analytically and finally compared.A good agreement is found despite the strong assumptions of the analytical model.The results show a clear correlation between the cut-on/cut-off conditions and stability.The least stable configuration corresponds to cut-off mode at the inlet and no wave at the outlet.Without outgoing waves from the cascade,the blade is prone to be less stable:the energy from the blades vibration is necessarily dissipated or sent out by the cascade.
基金supported by the International Scientific and Technological Cooperation Program of China(Grant No.2011DFG13020)the China Postdoctoral Science Foundation(Grant No.2013M530043)the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2007AA05Z426)
文摘In this article,the random walking method is used to solve the steady linear convection-diffusion equation(CDE)with disc boundary condition.The integral solution corresponding to the random walking method is deduced and the relationship between the diffusion coefficient of CDE and the intensity of the random diffusion motion is obtained.The random number generator for arbitrary axisymmetric disc boundary is deduced through the polynomial fitting and inverse transform sampling method.The proposed method is tested through two numerical cases.The results show that the random walking method can solve the steady linear CDE effectively.The influence of the parameters on the results is also studied.It is found that the error of the solution can be decreased by increasing the particle releasing rate and the total walking time.