A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm...A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.展开更多
Optimization of machining parameters is of great importance for multi-pass end milling because machining parameters adversely or positively affect the time and quality of production.This paper develops a second-order ...Optimization of machining parameters is of great importance for multi-pass end milling because machining parameters adversely or positively affect the time and quality of production.This paper develops a second-order fulldiscretization method(2ndFDM)-based 3-D stability prediction model for simultaneous optimization of spindle speed,axial cutting depth and radial cutting depth.The optimal machining parameters in each pass are obtained to achieve the minimum production time comprehensive considering constraints of 3-D stability,machine tool performance,tool life and machining requirements.A cloud drop-enabled particle swarm optimization(CDPSO)algorithm is proposed to solve the developed machining parameter optimization,and 13 benchmark problems are used to evaluate CDPSO algorithm.Numerical results show that CDPSO algorithm has a certain advantage in computational cost as well as comparable search quality and robustness.A demonstrative example is provided.展开更多
The interfacial perimeter of gold nanocatalysts is popularly viewed as the active sites for a number of chemical reactions,while the geometrical structure of the interface at atomic scale is less known.Here,TiO2-nanos...The interfacial perimeter of gold nanocatalysts is popularly viewed as the active sites for a number of chemical reactions,while the geometrical structure of the interface at atomic scale is less known.Here,TiO2-nanosheets and nanospindles were adapted to accommodate Au particles(~2.2 nm),forming Au-TiO2{001}and Au-TiO2{101}interfaces.Upon calcination at 623 K in air,HAADF-STEM images evidenced that the Au particles on TiO2{101}enlarged to 3.1 nm and these on TiO2{001}remained unchanged,suggesting the stronger metal-support interaction on TiO2{001}.Au/TiO2{001}was more active for CO oxidation than Au/TiO2{101}system.展开更多
Molecular simulation of charged colloidal suspension is performed in NVT canonical ensemble using Monte Carlo method and primitive model. The well-known Derjaguin-Landau-Verwey- Overbeek theory is applied to account f...Molecular simulation of charged colloidal suspension is performed in NVT canonical ensemble using Monte Carlo method and primitive model. The well-known Derjaguin-Landau-Verwey- Overbeek theory is applied to account for effective interactions between particles. Effect of temperature, valance of micro-ions and the size of colloidal particles on the phase stability of the solution is investigated. The results indicate that the suspension is more stable at higher temperatures. On the other hand, for a more stable suspension to exist, lower micro- ion valance is favorable. For micro-ions of higher charge the number of aggregates and the number of particle in each of aggregate on average is higher. However for the best of our results larger colloidal particle are less stable. Comparing the results with theoretical formula considering the influence of surface curvature shows qualitative consistency.展开更多
ZrO2/PMMA nanocomposite particles are synthesized through an in-situ free radical emulsion polymerization based on the silane coupling agent (Z-6030) modified ZrO2 nanoparticles, and the morphology, size and its dis...ZrO2/PMMA nanocomposite particles are synthesized through an in-situ free radical emulsion polymerization based on the silane coupling agent (Z-6030) modified ZrO2 nanoparticles, and the morphology, size and its distribution of nanocomposite particles are investigated. Scanning electron microscopy (SEM) images demonstrate that the methyl methacrylate (MMA) feeding rate has a significant effect on the particle size and morphology. When the MMA feeding rate decreases from 0.42 ml-min-1 to 0.08 ml. min-1, large particles (about 200-550.nm) will not form, and the size distribution become narrow (36-54 nm). The average nanocomposite particles size increases from 34 nm to 55 nm, as the MMA/ZrO2 nanoparticles mass ratio increased from 4 : 1 to 16 : 1. Regular spherical ZrO2/PMMA nanocomposite particles are synthesized when the emulsifier OP-10 concentration is 2 mg.m1-1. The nanocomposite particles could be mixed with VAc-VeoVa10 polymer matrix just by magnetic stirring to prepare the ZrOE/PMMA/VAc-VeoVal0 hybrid coatings. SEM and atomic force microscopy (AFM) photos reveal that the distribution of the ZrO2/PMMA nanocomposite particles in the VAc-VeoVal0 polymer matrix is homogenous and stable. Here, the grafted-PMMA polymer on ZrO2 nanoparticles plays as a bridge which effectively connects the ZrO2 nanoparticles and the VAc-VeoVal0 polymer matrix with improved comparability. In consequence, the hybrid coating with good dispersion stability is obtained.展开更多
文摘A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.
基金supported partially by the National Science Foundation of China(No.51775279)National Defense Basic Scientific Research Program of China(No. JCKY201605B006)+1 种基金Fundamental Research Funds for the Central Universities(No. NT2021019)Jiangsu Industry Foresight and Common Key Technology (No. BE2018127)
文摘Optimization of machining parameters is of great importance for multi-pass end milling because machining parameters adversely or positively affect the time and quality of production.This paper develops a second-order fulldiscretization method(2ndFDM)-based 3-D stability prediction model for simultaneous optimization of spindle speed,axial cutting depth and radial cutting depth.The optimal machining parameters in each pass are obtained to achieve the minimum production time comprehensive considering constraints of 3-D stability,machine tool performance,tool life and machining requirements.A cloud drop-enabled particle swarm optimization(CDPSO)algorithm is proposed to solve the developed machining parameter optimization,and 13 benchmark problems are used to evaluate CDPSO algorithm.Numerical results show that CDPSO algorithm has a certain advantage in computational cost as well as comparable search quality and robustness.A demonstrative example is provided.
基金supported by Liaoning Revitalization Talents Program (XLYC1807121)National Natural Science Foundation of China (20673054)~~
文摘The interfacial perimeter of gold nanocatalysts is popularly viewed as the active sites for a number of chemical reactions,while the geometrical structure of the interface at atomic scale is less known.Here,TiO2-nanosheets and nanospindles were adapted to accommodate Au particles(~2.2 nm),forming Au-TiO2{001}and Au-TiO2{101}interfaces.Upon calcination at 623 K in air,HAADF-STEM images evidenced that the Au particles on TiO2{101}enlarged to 3.1 nm and these on TiO2{001}remained unchanged,suggesting the stronger metal-support interaction on TiO2{001}.Au/TiO2{001}was more active for CO oxidation than Au/TiO2{101}system.
文摘Molecular simulation of charged colloidal suspension is performed in NVT canonical ensemble using Monte Carlo method and primitive model. The well-known Derjaguin-Landau-Verwey- Overbeek theory is applied to account for effective interactions between particles. Effect of temperature, valance of micro-ions and the size of colloidal particles on the phase stability of the solution is investigated. The results indicate that the suspension is more stable at higher temperatures. On the other hand, for a more stable suspension to exist, lower micro- ion valance is favorable. For micro-ions of higher charge the number of aggregates and the number of particle in each of aggregate on average is higher. However for the best of our results larger colloidal particle are less stable. Comparing the results with theoretical formula considering the influence of surface curvature shows qualitative consistency.
基金Supported by Production, Teaching & Research Combination Project for Universities in Guangdong Province(cgzhzd0904),Department of Education of Guangdong Province, China
文摘ZrO2/PMMA nanocomposite particles are synthesized through an in-situ free radical emulsion polymerization based on the silane coupling agent (Z-6030) modified ZrO2 nanoparticles, and the morphology, size and its distribution of nanocomposite particles are investigated. Scanning electron microscopy (SEM) images demonstrate that the methyl methacrylate (MMA) feeding rate has a significant effect on the particle size and morphology. When the MMA feeding rate decreases from 0.42 ml-min-1 to 0.08 ml. min-1, large particles (about 200-550.nm) will not form, and the size distribution become narrow (36-54 nm). The average nanocomposite particles size increases from 34 nm to 55 nm, as the MMA/ZrO2 nanoparticles mass ratio increased from 4 : 1 to 16 : 1. Regular spherical ZrO2/PMMA nanocomposite particles are synthesized when the emulsifier OP-10 concentration is 2 mg.m1-1. The nanocomposite particles could be mixed with VAc-VeoVa10 polymer matrix just by magnetic stirring to prepare the ZrOE/PMMA/VAc-VeoVal0 hybrid coatings. SEM and atomic force microscopy (AFM) photos reveal that the distribution of the ZrO2/PMMA nanocomposite particles in the VAc-VeoVal0 polymer matrix is homogenous and stable. Here, the grafted-PMMA polymer on ZrO2 nanoparticles plays as a bridge which effectively connects the ZrO2 nanoparticles and the VAc-VeoVal0 polymer matrix with improved comparability. In consequence, the hybrid coating with good dispersion stability is obtained.