In this paper on the basis of studying the distribution of fine Coal in the dense medAn fluidised bed. the optimai size range of fine coal, which constitutes a fluidized bed together with the dense medium, has been fo...In this paper on the basis of studying the distribution of fine Coal in the dense medAn fluidised bed. the optimai size range of fine coal, which constitutes a fluidized bed together with the dense medium, has been found. In the separating process the fine coal will continuously aeeumulate in fluidized bed, thus inevitably reducing the density of the bed.In order to keep bed density stable, the authors adopted such measures as split-now of used medium and complement of fresb dense medium.The experiment results in both lab and pilot systems of the air-dense medium fluidized bed show that these measures are effective and satisfactory. Then authors also have estabinbed some relative dynamic mathematical models for it.展开更多
Pension replacement rate in respect of almost everyone's retirement, about the sustainability of the whole pension system, stable relations of society as a whole. For the pension replacement rate study, researchers c...Pension replacement rate in respect of almost everyone's retirement, about the sustainability of the whole pension system, stable relations of society as a whole. For the pension replacement rate study, researchers conducted a more in-depth exploration, according to their different research needs to develop a different pension replacement rate concept. Based on previous studies scholars, for the relevant category of pension replacement rate to sort out, and for different categories of calculation method of the sort, in order to provide a reference for further study of the pension replacement rate.展开更多
This study proposes a new approach in which an impermeable plate is placed under the pipeline to prevent the local scour around the pipeline.In order to understand the performance of this approach,the finite volume me...This study proposes a new approach in which an impermeable plate is placed under the pipeline to prevent the local scour around the pipeline.In order to understand the performance of this approach,the finite volume method(FVM) and volume of fluid(VOF) method are adopted to simulate the flow field around the pipeline.The pressure distribution along the sandy bed surface is obtained by considering the variation of water surface.Furthermore,the effects of water depth,unidirectional and bidirectional impermeable plates on pressure difference are discussed.The seepage flow field of sandy bed near underwater pipeline is numerically simulated using the laminar and porous media model.On this basis,the effect of the impermeable plate length on hydraulic gradient is investigated and the critical length of impermeable plate is obtained.The simulated results show that when the water depth is smaller than 5.00D(D is the diameter of pipeline),the effect of the water depth on the pressure difference is remarkable.The pressure differences between two endpoints of both the unidirectional and bidirectional plates decrease with the increase of the plate length.The variations of the pressure differences for both the unidirectional and bidirectional plates are similar.With the increase of plate length,the hydraulic gradient decreases and the piping at the seepage exit is avoided effectively as long as it reaches a certain length.Such a critical length of the plate decreases with the increase of the water depth.When water depth is larger than 4.00D,the effect of the water depth on the critical length is small.For the same water depth,the critical length of impermeable plate increases with the increase of the dimensionless flow parameter.Numerical simulation results are in good agreement with the available experimental measurements.展开更多
文摘In this paper on the basis of studying the distribution of fine Coal in the dense medAn fluidised bed. the optimai size range of fine coal, which constitutes a fluidized bed together with the dense medium, has been found. In the separating process the fine coal will continuously aeeumulate in fluidized bed, thus inevitably reducing the density of the bed.In order to keep bed density stable, the authors adopted such measures as split-now of used medium and complement of fresb dense medium.The experiment results in both lab and pilot systems of the air-dense medium fluidized bed show that these measures are effective and satisfactory. Then authors also have estabinbed some relative dynamic mathematical models for it.
文摘Pension replacement rate in respect of almost everyone's retirement, about the sustainability of the whole pension system, stable relations of society as a whole. For the pension replacement rate study, researchers conducted a more in-depth exploration, according to their different research needs to develop a different pension replacement rate concept. Based on previous studies scholars, for the relevant category of pension replacement rate to sort out, and for different categories of calculation method of the sort, in order to provide a reference for further study of the pension replacement rate.
基金supported by the National Natural Science Foundation of China(Grant No.51279189)the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2008AA09Z309)China Scholarship Council and University of Aberdeen
文摘This study proposes a new approach in which an impermeable plate is placed under the pipeline to prevent the local scour around the pipeline.In order to understand the performance of this approach,the finite volume method(FVM) and volume of fluid(VOF) method are adopted to simulate the flow field around the pipeline.The pressure distribution along the sandy bed surface is obtained by considering the variation of water surface.Furthermore,the effects of water depth,unidirectional and bidirectional impermeable plates on pressure difference are discussed.The seepage flow field of sandy bed near underwater pipeline is numerically simulated using the laminar and porous media model.On this basis,the effect of the impermeable plate length on hydraulic gradient is investigated and the critical length of impermeable plate is obtained.The simulated results show that when the water depth is smaller than 5.00D(D is the diameter of pipeline),the effect of the water depth on the pressure difference is remarkable.The pressure differences between two endpoints of both the unidirectional and bidirectional plates decrease with the increase of the plate length.The variations of the pressure differences for both the unidirectional and bidirectional plates are similar.With the increase of plate length,the hydraulic gradient decreases and the piping at the seepage exit is avoided effectively as long as it reaches a certain length.Such a critical length of the plate decreases with the increase of the water depth.When water depth is larger than 4.00D,the effect of the water depth on the critical length is small.For the same water depth,the critical length of impermeable plate increases with the increase of the dimensionless flow parameter.Numerical simulation results are in good agreement with the available experimental measurements.