最小均方(least mean square,LMS)算法在时变信道的最小稳态均方偏差(mean square deviation,MSD)由输入功率、噪声功率、随机扰动信号功率以及滤波器长度共同决定。为达到系统中最小的MSD值,传统的LMS算法存在有迭代次数较多和收敛速...最小均方(least mean square,LMS)算法在时变信道的最小稳态均方偏差(mean square deviation,MSD)由输入功率、噪声功率、随机扰动信号功率以及滤波器长度共同决定。为达到系统中最小的MSD值,传统的LMS算法存在有迭代次数较多和收敛速度慢等问题,提出了一种多态可变步长最小均方(multi-state variable step size least mean square,MVSS-LMS)算法。该算法通过添加暂态递减步长作为过渡,实现以更快的收敛速度达到系统中最小的MSD值。理论分析与仿真结果表明,与目前最新的Prob-LMS算法相比,所提算法在时变信道以及突变信道都具有更快的收敛速度和更低的MSD值,且算法的复杂度更低。展开更多
提出了一种新的变步长算法,并将该算法用于水声信道均衡。该算法克服改进归一化最小均方(developed normanized least mean square,XENLMS)算法依赖固定能量参数λ的局限性,遵循变步长算法的步长调整原则在XENLMS算法的基础上引入一个...提出了一种新的变步长算法,并将该算法用于水声信道均衡。该算法克服改进归一化最小均方(developed normanized least mean square,XENLMS)算法依赖固定能量参数λ的局限性,遵循变步长算法的步长调整原则在XENLMS算法的基础上引入一个自适应混合能量参数λk,改善算法收敛速度和鲁棒性。首先通过仿真分析变步长算法中的3个固定参数α,β,μ的取值范围及对算法收敛性能的影响;并在两种典型的水声信道环境下,采用两种调制信号对算法的收敛性能进行计算机仿真,结果显示,新算法的收敛速度明显快于XENLMS算法和已有的变步长算法,收敛性能接近递归最小二乘(recursive least square,RLS)算法的最优性能,但计算复杂度远小于RLS算法。最后,木兰湖试验验证了带判决反馈均衡器(decision feedback equalization,DFE)结构的新算法具有较好的克服多径效应和多普勒频移补偿的能力,相比LMS-DFE提高了一个数量级。展开更多
文摘最小均方(least mean square,LMS)算法在时变信道的最小稳态均方偏差(mean square deviation,MSD)由输入功率、噪声功率、随机扰动信号功率以及滤波器长度共同决定。为达到系统中最小的MSD值,传统的LMS算法存在有迭代次数较多和收敛速度慢等问题,提出了一种多态可变步长最小均方(multi-state variable step size least mean square,MVSS-LMS)算法。该算法通过添加暂态递减步长作为过渡,实现以更快的收敛速度达到系统中最小的MSD值。理论分析与仿真结果表明,与目前最新的Prob-LMS算法相比,所提算法在时变信道以及突变信道都具有更快的收敛速度和更低的MSD值,且算法的复杂度更低。
文摘提出了一种新的变步长算法,并将该算法用于水声信道均衡。该算法克服改进归一化最小均方(developed normanized least mean square,XENLMS)算法依赖固定能量参数λ的局限性,遵循变步长算法的步长调整原则在XENLMS算法的基础上引入一个自适应混合能量参数λk,改善算法收敛速度和鲁棒性。首先通过仿真分析变步长算法中的3个固定参数α,β,μ的取值范围及对算法收敛性能的影响;并在两种典型的水声信道环境下,采用两种调制信号对算法的收敛性能进行计算机仿真,结果显示,新算法的收敛速度明显快于XENLMS算法和已有的变步长算法,收敛性能接近递归最小二乘(recursive least square,RLS)算法的最优性能,但计算复杂度远小于RLS算法。最后,木兰湖试验验证了带判决反馈均衡器(decision feedback equalization,DFE)结构的新算法具有较好的克服多径效应和多普勒频移补偿的能力,相比LMS-DFE提高了一个数量级。