In the previous paper [1], the transient stability of synchronous generator in power system with high-penetration PV (photovoltaic) was assessed by simulation analysis of a single-machine infinite-bus system model. ...In the previous paper [1], the transient stability of synchronous generator in power system with high-penetration PV (photovoltaic) was assessed by simulation analysis of a single-machine infinite-bus system model. Through the simulation analysis, we have obtained some conclusions in terms of the impact of high-penetration PV on the stability. However, for more accurate assessment of the transient stability, it is necessary to analyze various simulation models considering many other power system conditions. This paper presents the results of the analysis for the transient stability simulation performed for IEEE 9-bus system model, in which the effects of various conditions, such as variety of power sources (inverter or rotational machine), load characteristics, existence of LVRT (low-voltage ride-through) capability and fault locations, on the transient stability are investigated.展开更多
文摘In the previous paper [1], the transient stability of synchronous generator in power system with high-penetration PV (photovoltaic) was assessed by simulation analysis of a single-machine infinite-bus system model. Through the simulation analysis, we have obtained some conclusions in terms of the impact of high-penetration PV on the stability. However, for more accurate assessment of the transient stability, it is necessary to analyze various simulation models considering many other power system conditions. This paper presents the results of the analysis for the transient stability simulation performed for IEEE 9-bus system model, in which the effects of various conditions, such as variety of power sources (inverter or rotational machine), load characteristics, existence of LVRT (low-voltage ride-through) capability and fault locations, on the transient stability are investigated.