This study investigated the temperature field and thawing depth of wide embankment for expressway in permafrost regions based on numerical analysis by using finite element method(FEM).According to specific embankment ...This study investigated the temperature field and thawing depth of wide embankment for expressway in permafrost regions based on numerical analysis by using finite element method(FEM).According to specific embankment section of Qinghai-Tibet highway,computational region for numerical analysis was defined.And numerical model was developed through FEM software named as ABAQUS and was verified by field observed data.The effects by width and height of embankment on the thermal regime of computational region were analyzed based on FEM modeling.Numerical analysis showed that embankment construction has serious disturbance on the thermal stability of ground permafrost showing as annual average ground temperature and the maximum thawing depth keeps increasing with service time increasing.And larger embankment width leads to poorer thermal stability and more serious uneven temperature field of embankment.Raising embankment height can improve the thermal stability; however,the improvement is restricted for wide embankment and it cannot change the degradation trend of thermal stability with service life increasing.Thus,to construct expressway with wide embankment in permafrost regions of Qinghai-Tibet Plateau,effective measures need to be considered to improve the thermal stability of underlying permafrost.展开更多
In order to study temperature field distribution in burnt surrounding rock and to determine ranges of burnt surrounding rock, coal-wall coking cycle and heat influence in the underground coal gasification(UCG) stope, ...In order to study temperature field distribution in burnt surrounding rock and to determine ranges of burnt surrounding rock, coal-wall coking cycle and heat influence in the underground coal gasification(UCG) stope, based on the Laplace transform and inversion formula, we studied the temperature analytical solution of one-dimensional unsteady heat conduction for multi-layer overlying strata under the first and the forth kinds of boundary conditions, and we also carried out a numerical simulation of twodimensional unsteady heat conduction by the COMSOL multiphysics. The results show that when the boundary temperature of surrounding rock has a linear decrease because of a directional movement of heat source in the UCG flame working face, the temperature in surrounding rock increases first and then decreases with time, the peak of temperature curve decreases gradually and its position moves inside surrounding rock from the boundary. In the surrounding rock of UCG stope, there is an envelope curve of temperature curve clusters. We analyzed the influence of thermophysical parameters on envelope curves and put forward to take envelope curve as the calculation basis for ranges of burnt surrounding rock, coal-wall coking cycle and heat influence. Finally, the concrete numerical values are given by determining those judgement standards and temperature thresholds, which basically tally with the field geophysical prospecting results.展开更多
基金Project(2014BAG05B04)supported by the National Science and Technology Support Program,ChinaProject(51378006)supported by the National Natural Science Foundation of ChinaProject(2242015R30027)supported by the Excellent Young Teacher Program of Southeast University,China
文摘This study investigated the temperature field and thawing depth of wide embankment for expressway in permafrost regions based on numerical analysis by using finite element method(FEM).According to specific embankment section of Qinghai-Tibet highway,computational region for numerical analysis was defined.And numerical model was developed through FEM software named as ABAQUS and was verified by field observed data.The effects by width and height of embankment on the thermal regime of computational region were analyzed based on FEM modeling.Numerical analysis showed that embankment construction has serious disturbance on the thermal stability of ground permafrost showing as annual average ground temperature and the maximum thawing depth keeps increasing with service time increasing.And larger embankment width leads to poorer thermal stability and more serious uneven temperature field of embankment.Raising embankment height can improve the thermal stability; however,the improvement is restricted for wide embankment and it cannot change the degradation trend of thermal stability with service life increasing.Thus,to construct expressway with wide embankment in permafrost regions of Qinghai-Tibet Plateau,effective measures need to be considered to improve the thermal stability of underlying permafrost.
基金supported by the State Key Laboratory of Coal Resources and Safe Mining (No. SKLCRSM10X04)the National Natural Science Foundation of China ((No. 21243006)+1 种基金the Foundation of Ministry of Education of China ((No. 02019)the Priority Academic Program Development of Jiangsu Higher Education Institutions (No.SZBF2011-6-B35)
文摘In order to study temperature field distribution in burnt surrounding rock and to determine ranges of burnt surrounding rock, coal-wall coking cycle and heat influence in the underground coal gasification(UCG) stope, based on the Laplace transform and inversion formula, we studied the temperature analytical solution of one-dimensional unsteady heat conduction for multi-layer overlying strata under the first and the forth kinds of boundary conditions, and we also carried out a numerical simulation of twodimensional unsteady heat conduction by the COMSOL multiphysics. The results show that when the boundary temperature of surrounding rock has a linear decrease because of a directional movement of heat source in the UCG flame working face, the temperature in surrounding rock increases first and then decreases with time, the peak of temperature curve decreases gradually and its position moves inside surrounding rock from the boundary. In the surrounding rock of UCG stope, there is an envelope curve of temperature curve clusters. We analyzed the influence of thermophysical parameters on envelope curves and put forward to take envelope curve as the calculation basis for ranges of burnt surrounding rock, coal-wall coking cycle and heat influence. Finally, the concrete numerical values are given by determining those judgement standards and temperature thresholds, which basically tally with the field geophysical prospecting results.