期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
具有仿生距下关节和跖趾关节的完全被动步行机 被引量:1
1
作者 钱志辉 周亮 +1 位作者 任雷 任露泉 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第1期205-211,共7页
以人体足部关节为仿生模本,研制了具有仿生距下关节(矢状面内关节轴倾角为45°)和跖趾关节(添加脚趾)的新型完全被动步行机,并实现了稳态行走。通过单因素试验确定了步行机的最佳高度;采用多因素混合正交试验设计,分析了步行机高度... 以人体足部关节为仿生模本,研制了具有仿生距下关节(矢状面内关节轴倾角为45°)和跖趾关节(添加脚趾)的新型完全被动步行机,并实现了稳态行走。通过单因素试验确定了步行机的最佳高度;采用多因素混合正交试验设计,分析了步行机高度、有无足趾、腿间距3个因素对步行机行走性能的影响。结果表明:研究范围内,对步行机行走性能(稳定行走距离和行走速度)影响最大的因素为腿间距;足部有、无脚趾对行走速度具有次要影响,而步行机高度则对行走最大距离具有次要影响。 展开更多
关键词 工程仿生学 被动动力行走 关节斜轴 仿生设计 稳态行走 混合正交试验设计
下载PDF
A gait planning method applied to hexapod biomimetic robot locomotion 被引量:1
2
作者 陈甫 《High Technology Letters》 EI CAS 2009年第1期7-12,共6页
In order to fulfill the goal of autonomous walking on rough terrain,a distributed gait planningmethod applied to hexapod biomimetic robot locomotion is proposed based on the research effort of gait co-ordination mecha... In order to fulfill the goal of autonomous walking on rough terrain,a distributed gait planningmethod applied to hexapod biomimetic robot locomotion is proposed based on the research effort of gait co-ordination mechanism of stick insect.The mathematical relation of walking velocity and gait pattern wasdepicted,a set of local rules operating between adjacent legs were put forward,and a distributed networkof local rules for gait control was constructed.With the interaction of adjacent legs,adaptive adjustmentof phase sequence fluctuation of walking legs resulting from change of terrain conditions or variety of walk-ing speed was implemented to generate statically stable gait.In the simulation experiments,adaptive ad-justment of inter-leg phase sequence and smooth transition of velocity and gait pattern were realized,andstatic stableness was ensured simultaneously,which provided the hexapod robot with the capability ofwalking on rough terrain stably and expeditiously. 展开更多
关键词 hexapod robot gait planning free gait local rules
下载PDF
Novel Walking Stability-Based Gait Recognition Method for Functional Electrical Stimulation System Control
3
作者 明东 万柏坤 +4 位作者 胡勇 汪曣 王威杰 吴英华 陆瓞骥 《Transactions of Tianjin University》 EI CAS 2007年第2期93-97,共5页
Gait recognition is the key question of functional electrical stimulation (FES) system control for paraplegic walking. A new risk-tendency-graph (RTG) method was proposed to recognize the stability information in FES-... Gait recognition is the key question of functional electrical stimulation (FES) system control for paraplegic walking. A new risk-tendency-graph (RTG) method was proposed to recognize the stability information in FES-assisted walking gait. The main instrument was a specialized walker dynamometer system based on a multi-channel strain-gauge bridge network fixed on the walker frame. During walking process, this system collected the reaction forces between patient's upper extremities and walker and converted them into RTG morphologic curves of dynamic gait stability in temporal and spatial domains. To demonstrate the potential usefulness of RTG, preliminary clinical trials were done with paraplegic patients. The gait stability levels of two walking cases with 4- and 12-week FES training from one subject were quantified (0.43 and 0.19) from the results of temporal and spatial RTG. Relevant instable phases in gait cycle and dangerous inclinations of patient's body during walking process were also brought forward. In conclusion, the new RTG method is practical for distinguishing more useful gait stability information for FES system control. 展开更多
关键词 gait recognition functional electrical stimulation parapegic walking risk-tendency-graph
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部