An analytical model is proposed to calculate single event transient (SET) pulse width with bulk complementary metal oxide semiconductor (CMOS) technology based on the physics of semiconductor devices. Combining with t...An analytical model is proposed to calculate single event transient (SET) pulse width with bulk complementary metal oxide semiconductor (CMOS) technology based on the physics of semiconductor devices. Combining with the most prevalent negative bias temperature instability (NBTI) degradation model, a novel analytical model is developed to predict the time evolution of the NBTI induced SET broadening in the production, and NBTI experiments and three-dimensional numerical device simulations are used to verify the model. At the same time, an analytical model to predict the time evolution of the NBTI induced SET broadening in the propagation is also proposed, and NBTI experiments and the simulation program with integrated circuit emphasis (SPICE) are used to verify the proposed model.展开更多
基金supported by the Key Program of the National Natural Science Foundation of China (Grant No. 60836004)the National Natural Science Foundation of China (Grant Nos. 61006070, 61076025)
文摘An analytical model is proposed to calculate single event transient (SET) pulse width with bulk complementary metal oxide semiconductor (CMOS) technology based on the physics of semiconductor devices. Combining with the most prevalent negative bias temperature instability (NBTI) degradation model, a novel analytical model is developed to predict the time evolution of the NBTI induced SET broadening in the production, and NBTI experiments and three-dimensional numerical device simulations are used to verify the model. At the same time, an analytical model to predict the time evolution of the NBTI induced SET broadening in the propagation is also proposed, and NBTI experiments and the simulation program with integrated circuit emphasis (SPICE) are used to verify the proposed model.