基于新疆电网2017年规划网架结构,±1 100 k V准东直流将作为第二条直流外送通道接入新疆送端电网。为了保障新疆送端电网的安全稳定运行,当±800 k V哈郑直流发生闭锁故障时,提出综合考虑±1 100 k V直流紧急功率支援、送...基于新疆电网2017年规划网架结构,±1 100 k V准东直流将作为第二条直流外送通道接入新疆送端电网。为了保障新疆送端电网的安全稳定运行,当±800 k V哈郑直流发生闭锁故障时,提出综合考虑±1 100 k V直流紧急功率支援、送端电网切机的稳控手段,分析两种不同稳控措施对于含双直流送端电网运行电压的影响。研究结果表明在满足新疆电网稳定运行前提下,稳控切机配合直流紧急功率支援能有效降低送端电网的切机量,平衡直流故障后的无功功率。该稳控措施对提高双直流送端电网的电压稳定及优化送端电网稳控切机不平衡量具有一定的参考价值。展开更多
甘肃电网是西北电网的重要组成部分。由于地处西北电网中心地带,肩负着"西电东送"和"北电南送"的重任,与新疆、青海、宁夏、陕西4省均有重要750 k V的联络线。由于甘新断面、甘青断面、甘宁断面和甘陕断面均通过较...甘肃电网是西北电网的重要组成部分。由于地处西北电网中心地带,肩负着"西电东送"和"北电南送"的重任,与新疆、青海、宁夏、陕西4省均有重要750 k V的联络线。由于甘新断面、甘青断面、甘宁断面和甘陕断面均通过较大功率,甘肃电网的稳定与否也就成了西北电网稳定与否的关键。仿真了各个断面在N-2故障下重要发电机相对功角和重要750 k V交流线频率,提出了针对实际情况的稳控措施,对提高甘肃电网重要断面的稳定性有一定指导作用。展开更多
Embankment stability is the primary problem for the expressway construction in permafrost regions.The proposed Qinghai-Tibet Expressway(QTE)is planned to construct along the Qinghai-Tibet Project Corridor.Confronted w...Embankment stability is the primary problem for the expressway construction in permafrost regions.The proposed Qinghai-Tibet Expressway(QTE)is planned to construct along the Qinghai-Tibet Project Corridor.Confronted with harsh environmental condition and intense heat exchange between earth and atmosphere,it is necessary to predict and evaluate the stability of the proposed QTE.In this study,the factors affecting the embankment stability are analyzed firstly.And then,a scheme for the stability evaluation of the embankment is established.Finally,the evaluation scheme is used for the pre-evaluation of the stability for the proposed QTE with different geothermal regulation measures(GRMs).The results indicate that the influencing factors include climatic environment,permafrost property,engineering condition and geological condition,and among them,engineering condition and permafrost property are the main influence factors for embankment stability.The stability of the proposed QTE varies greatly in the different geomorphological regions.The application effect and contribution to embankment stability of the existing GRMs are different,and using GRMs cannot completely overcome the influence of various factors on expressway stability.In the construction process,different GRMs should be adopted depending on the geomorphological environment where the embankment is located to ensure the embankment stability.展开更多
A field monitoring program was carried out to record the slope failure process of a landfill with multiple intermediate covering layers.The monitored items include the leachate level,the surface horizontal displacemen...A field monitoring program was carried out to record the slope failure process of a landfill with multiple intermediate covering layers.The monitored items include the leachate level,the surface horizontal displacement and the deep lateral displacement.Based on the monitoring data,analysis was carried out to verify the stability control effects of leachate drainage on the top layer,leachate drainage in different layers,and near-slope leachate drainage.The results show that the maximum slip area is 34 760 m 2 and the average surface horizontal displacement of the 10th platform is 1.77 m.Dumping near the slope is the main reason for the instability.The closer to the dumping area,the greater the degree of slip and the more significantly the leachate level rises.Affected by the intermediate covering layers,the failure mode is the local sliding inside the landfill,and the effect of near-slope leachate drainage on the stability control is obvious.展开更多
文摘基于新疆电网2017年规划网架结构,±1 100 k V准东直流将作为第二条直流外送通道接入新疆送端电网。为了保障新疆送端电网的安全稳定运行,当±800 k V哈郑直流发生闭锁故障时,提出综合考虑±1 100 k V直流紧急功率支援、送端电网切机的稳控手段,分析两种不同稳控措施对于含双直流送端电网运行电压的影响。研究结果表明在满足新疆电网稳定运行前提下,稳控切机配合直流紧急功率支援能有效降低送端电网的切机量,平衡直流故障后的无功功率。该稳控措施对提高双直流送端电网的电压稳定及优化送端电网稳控切机不平衡量具有一定的参考价值。
文摘甘肃电网是西北电网的重要组成部分。由于地处西北电网中心地带,肩负着"西电东送"和"北电南送"的重任,与新疆、青海、宁夏、陕西4省均有重要750 k V的联络线。由于甘新断面、甘青断面、甘宁断面和甘陕断面均通过较大功率,甘肃电网的稳定与否也就成了西北电网稳定与否的关键。仿真了各个断面在N-2故障下重要发电机相对功角和重要750 k V交流线频率,提出了针对实际情况的稳控措施,对提高甘肃电网重要断面的稳定性有一定指导作用。
基金Project(2019QZKK0905)supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program,ChinaProject(41901074)supported by the National Natural Science Foundation of China+2 种基金Project(2020A1515010745)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(SKLFSE201810)supported by the Open Fund of the State Key Laboratory of Frozen Soil Engineering,ChinaProject(2019MS119)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Embankment stability is the primary problem for the expressway construction in permafrost regions.The proposed Qinghai-Tibet Expressway(QTE)is planned to construct along the Qinghai-Tibet Project Corridor.Confronted with harsh environmental condition and intense heat exchange between earth and atmosphere,it is necessary to predict and evaluate the stability of the proposed QTE.In this study,the factors affecting the embankment stability are analyzed firstly.And then,a scheme for the stability evaluation of the embankment is established.Finally,the evaluation scheme is used for the pre-evaluation of the stability for the proposed QTE with different geothermal regulation measures(GRMs).The results indicate that the influencing factors include climatic environment,permafrost property,engineering condition and geological condition,and among them,engineering condition and permafrost property are the main influence factors for embankment stability.The stability of the proposed QTE varies greatly in the different geomorphological regions.The application effect and contribution to embankment stability of the existing GRMs are different,and using GRMs cannot completely overcome the influence of various factors on expressway stability.In the construction process,different GRMs should be adopted depending on the geomorphological environment where the embankment is located to ensure the embankment stability.
基金The National Basic Research Program of China(973Project)(No.2012CB719800)the National Natural Science Foundation of China(No.41502276)
文摘A field monitoring program was carried out to record the slope failure process of a landfill with multiple intermediate covering layers.The monitored items include the leachate level,the surface horizontal displacement and the deep lateral displacement.Based on the monitoring data,analysis was carried out to verify the stability control effects of leachate drainage on the top layer,leachate drainage in different layers,and near-slope leachate drainage.The results show that the maximum slip area is 34 760 m 2 and the average surface horizontal displacement of the 10th platform is 1.77 m.Dumping near the slope is the main reason for the instability.The closer to the dumping area,the greater the degree of slip and the more significantly the leachate level rises.Affected by the intermediate covering layers,the failure mode is the local sliding inside the landfill,and the effect of near-slope leachate drainage on the stability control is obvious.